
- •I. Элементы линейной и векторной алгебры, аналитической геометрии.
- •1. Определители второго и третьего порядков. Основные свойства. Минор и алгебраическое дополнение. Понятие определителя n-ого порядка и его вычисление.
- •Свойства определителей.
- •2. Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы.
- •Основные действия над матрицами.
- •Обратная матрица.
- •Свойства обратных матриц.
- •3. Системы линейных уравнений. Теорема Кронекера-Капелли (формулировка). Правило Крамера.
- •Элементарные преобразования систем.
- •Теорема Кронекера – Капелли. (условие совместности системы)
- •Метод Крамера.
- •4. Решение систем линейных уравнений матричным методом.
- •5. Метод Гаусса. Однородные системы линейных уравнений и их решение. Метод Гаусса.
- •Однородные системы линейных уравнений
- •6. Векторы. Линейные операции над векторами и их свойства.
- •Свойства векторов.
- •7. Проекция вектора на ось. Свойства проекций.
- •Некоторые свойства проекций
- •8. Линейная зависимость векторов. Разложение вектора по базису. Линейная зависимость векторов.
- •9. Декартова система координат. Координаты вектора. Система координат.
- •Декартова система координат.
- •Линейные операции над векторами в координатах.
- •10. Направляющие косинусы, длина вектора.
- •11. Деление отрезка в данном отношении.
- •12. Скалярное произведение векторов, его свойства, вычисление и применение.
- •13. Векторное произведение векторов, его свойства, вычисление и применение.
- •Свойства векторного произведения векторов:
- •14. Смешенное произведение векторов, его свойства, вычисление и применение.
- •Свойства смешанного произведения:
- •15. Прямая линия на плоскости. Различные способы задания. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой на плоскости. Уравнение линии на плоскости.
- •Уравнение прямой на плоскости.
- •Уравнение прямой по точке и вектору нормали.
- •Уравнение прямой по точке и направляющему вектору.
- •Параметрическое уравнение прямой
- •Уравнение прямой, проходящей через две точки.
- •2. Условие перпендикулярности.
- •16. Плоскость в пространстве. Различные способы задания. Взаимное расположение плоскостей. Расстояние от точки до плоскости. Общее уравнение плоскости.
- •Уравнение плоскости по точке и вектору нормали.
- •Уравнение плоскости в отрезках.
- •Уравнение плоскости, проходящей через три точки.
- •17. Прямая в пространстве. Различные способы задания. Взаимное расположение прямых в пространстве. Уравнение прямой в пространстве по точке и направляющему вектору.
- •Уравнение прямой в пространстве, проходящей через две точки.
- •Общие уравнения прямой в пространстве.
- •Условия параллельности и перпендикулярности прямых в пространстве.
- •Угол между прямыми в пространстве.
- •18. Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- •Условия параллельности и перпендикулярности прямой и плоскости в пространстве.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •20. Поверхности второго порядка. Цилиндрические поверхности. Исследование поверхностей методом сечений. Поверхности второго порядка.
- •С фера:
- •К онус второго порядка:
- •Двуполостный гиперболоид:
- •Эллиптический параболоид:
- •Г иперболический параболоид:
- •II. Введение в математический анализ
- •21. Множество действительных чисел.
- •Операции над множествами.
- •22. Функция, область ее определения и способы задания. Сложные и обратные функции.
- •Способы задания функций
- •Сложная функция.
- •Обратная функция.
- •23. Свойства (четность, периодичность, монотонность, ограниченность) и графики функций.
- •24. Гиперболические функции, их свойства и графики.
- •25. Числовые последовательности. Предел числовой последовательности.
- •Ограниченные и неограниченные последовательности.
- •26. Число е. Натуральные логарифмы.
- •Связь натурального и десятичного логарифмов.
- •2 7. Предел функции в точке, односторонние пределы. Геометрическая иллюстрация определений.
- •28. Предел функции в бесконечности. Геометрическая иллюстрация.
- •29. Бесконечно малые функции и их свойства. Бесконечно большие функции. Связь между бесконечно малыми и бесконечно большими функциями.
- •Бесконечно большие функции и их связь с бесконечно малыми.
- •30. Основные теоремы о пределах.
- •Теорема доказана.
- •31. Первый и второй замечательные пределы.
- •32. Сравнение бесконечно малых функций.
- •33. Непрерывность функций в точке и на отрезке. Точки разрыва функции и их классификация.
- •Точки разрыва и их классификация.
- •Непрерывность функции на интервале и на отрезке.
- •34. Свойства функций непрерывных в точке.
- •Непрерывность некоторых элементарных функций.
- •35. Свойства функций непрерывных на отрезке (теоремы Вейерштрасса, Коши, о промежуточных значениях) и их геометрических смысл.
- •III. Дифференциальное исчисление функции одной переменной.
- •36. Задачи, приводящие к определению производной.
- •37. Производная функции, ее геометрический и механический смыслы.
- •38. Односторонние производные. Производная сложной и обратной функции. Односторонние производные функции в точке.
- •Производная сложной функции.
- •Производная обратных функций.
- •Основные правила дифференцирования.
- •Производные основных элементарных функций.
- •Дифференциал функции.
- •42. Свойства дифференциала и инвариантность его формулы. Применение дифференциала к приближенным вычислениям.
- •Применение дифференциала к приближенным вычислениям.
- •43. Производные и дифференциалы высших порядков. Производные и дифференциалы высших порядков.
- •Общие правила нахождения высших производных.
- •44. Основные теоремы дифференциального исчисления: Ролля (с доказательством), Коши (без доказательства), Лагранжа (с доказательством). Теорема Ролля
- •Теорема Коши.
- •Теорема Лагранжа.
- •45. Правило Лопиталя (доказательство для случая неопределенности ). Правило Лопиталя.
- •Точки экстремума.
- •Асимптоты.
- •Вертикальные асимптоты.
- •Наклонные асимптоты.
Двуполостный гиперболоид:
координатная
плоскость
не пересекает такую поверхность.
если
эллипс.
Если
- точка.
Пересечение двуполостного гиперболоида плоскостью, параллельной либо эллипс, либо точка, либо пустое сомножество.
гипербола
с действительной осью
.
гипербола
с действительной осью
.
Аналогично рассекаем плоскостью .
Всегда получается гипербола с действительной осью .
Эллиптический параболоид:
эллипс
эллипс
стягивается в точку.
Сечение этой поверхности другими координатными плоскостями дает параболу.
парабола
оси
.
парабола.
Г иперболический параболоид:
парабола.
парабола.
парабола.
гипербола.
Если
,
то действительная ось ОХ, если
,
то действительная ось
.
II. Введение в математический анализ
21. Множество действительных чисел.
Основные понятия теории множеств.
Определение. Множеством М называется объединение в единое целое определенных различимых объектов а, которые называются элементами множества.
а М
Множество можно описать, указав какое – нибудь свойство, присущее всем элементам этого множества.
Множество, не содержащее элементов, называется пустым и обзначается .
Определение. Если все элементы множества А являются также элементами множества В, то говорят, что множество А включается (содержится) в множестве В.
А
В
А В
Определение. Если А В, то множество А называется подмножеством множества В, а если при этом А В, то множество А называется собственным подмножеством множества В и обозначается А В.
Для трех множеств А, В, С справедливы следующие соотношения.
Связь между включением и равенством множеств устанавливается следующим соотношением:
Здесь знак обозначает конъюнкцию (логическое “и”).
Операции над множествами.
Определение. Объединением множеств А и В называется множество С, элементы которого принадлежат хотя бы одномк из множеств А и В.
Обозначается
С = А
В.
А В
Геометрическое изображение множеств в виде области на плоскости называется диаграммой Эйлера – Венна.
Определение. Пересечением множеств А и В называется множество С, элементы которого принадлежат каждому из множеств А и В.
Обозначение С = А В.
А С В
Для множеств А, В и С справедливы следующие свойства:
А А = А А = А; A B = B A; A B = B A;
(A B) C = A (B C); (A B) C = A (B C);
A (B C) = (A B) (A C); A (B C) = (A B) (A C);
A (A B) = A; A (A B) = A;
=
А;
A
= ;
Определение. Разностью множеств А и В называется множество, состоящее из элементов множества А, не принадлежащих множеству В.
Обозначается С = А \ В.
А В
Определение. Симметрической разностью множеств А и В называется множество С, элементы которого принадлежат в точности одному из множеств А или В.
Обозначается А В.
А В = (A \ B) (B \ A)
A B
О
пределение.
СЕ
называется дополнением
множества
А относительно множества Е, если А
Е и CЕ
= Е \ A.
A E
Для множеств А, В и С справедливы следующие соотношения:
A \ B A; A \ A = ; A \ (A \ B) = A B;
A B = B A; A B = (A B) \ (A B);
A \ (B C) = (A \ B) (A \ C); A \ (B C) = (A \ B) (A \ C);
(A B) \ C = (A \ C) (B \ C); (A B) \ C = (A \ C) (B \ C);
A \ (B \ C) = (A \ B) (A C); (A \ B) \ C = A \ (B C);
(A B) C = A (B C); A (B C) = (A B) (A C);
A CEA = E; A CEA = ; CEE = ; CE = E; CECEA = A;
CE(A B) = CEA CEB; CE(A B) = CEA CEB;
Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество и проверить его с помощью диаграммы Эйлера - Вейна.
Из записанных выше соотношений видно, что
=
A
\ В
Что и требовалось доказать.
Для иллюстрации полученного результата построим диаграммы Эйлера – Вейна
А В А В
AB
Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество.
A \ (B C) = (A \ B) (A \ C)
Если некоторый элемент х А \ (В С), то это означает, что этот элемент принадлежит множеству А, но не принадлежит множествам В и С.
Множество А\В представляет собой множество элементов множества А, не принадлежащих множеству В.
Множество А\С предсталяет собой множество элементов множества А, не принадлежащих множеству С.
Множество (A\B) (A\C) представляет собой множество элементов, которые принадлежат множеству А, но не принадлежат ни множеству В, ни множеству С.
Таким образом, тождество можно считать доказанным.