Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры1.doc
Скачиваний:
34
Добавлен:
17.04.2019
Размер:
470.53 Кб
Скачать

12. Общая задача математического прог-раммирования

Многие проблемы, возникающие в экономических исследованиях, планировании и управлении, будучи сформулированными математически, представляют собой задачи, в которых необходимо решить с-му линейных алгебраических уравнений или неравенств и среди всех неотрицательных решений найти то решение, при котором линейная однородная функция принимает наибольшее или наименьшее значение. Изучение методов исследования и решения математических задач указанного типа составляет содержание раздела математики, кот. Принято называть линейным программированием.

Основная задача линейного программирования формулируется следующим образом: Даны система m линейных уравнений с n неизвестными

а11x1 + a12x2 + … a1nxn = b1

а21x1 + a22x2 + … a2nxn = b2 (1)

. . . . .

аm1x1 + am2x2 + … amnxn = bm.

Где неизвестные могут принимать только неотрицательные значения x1≥0, x2≥0, ...xn≥0 (2), и линейная однородная ф-я от тех же переменных L=c1x1+c2x2+...cnxn (3). Требуется среди всех решений системы уравнений (1) найти такое неотрицательное решение, при котором линейная форма (3) принимает наименьшее возможное значение.

Любое неотрицательное значение системы называют допустимым, а допустимое решение, при котором целевая ф-я (3) принимает наименьшее значение – оптимальным решением задачи ЛП (1)-(3).

Если в математической модели какой-либо задачи планирования будут содержаться линейные неравенства, то их можно заменить линейными уравнениями с помощью дополнительных неотрицательных неизвестных. Кроме того, если в конкретной задаче надо будет найти наибольшее значение некоторой линейной формы

u = c1x1+c2x2+…+c x при линейных ограничениях, то для приведения такой задачи к виду основной задачи линейного прогр-ия достаточно линейную форму u заменить на

v = -u = -c1x1-c2x2… c x

Задачу линейного программирования нередко

формулируют как задачу минимизации или макси-мизации линейной формы L=c1x1+c2x2+...cnxn (1) при ограничениях x1≥0, x2≥0, ...xn≥0 и

∑ aijxj≤bi, i=1,2,...m1,

∑ aijxj=bi, i= m1+1, m1+2,...m2,

∑ aijxj≥bi, i= m2+1, m2+2,...m.

Такую запись называют общей задачей линейного программирования.

Обозначим через А матрицу системы линейных уравнений:

а11x1 + a12x2 + … a1nxn = b1

а21x1 + a22x2 + … a2nxn = b2 (2)

. . . . .

аm1x1 + am2x2 + … amnxn = bm.

Через X и B – матрицы-столбцы (векторы) неизвестных и свободных членов:

а11 … а1n x1 b1

А = ... ... , X= ... , B= ...

am1 ... amn xn bm

а также введем в рассмотрение n-мерный вектор C = (с1 … сn), компонентами которого служат коэффициенты линейной формы (1), и n-мерный нуль-вектор 0(0, 0, …, 0). Тогда линейную форму (1) можно рассматривать как скалярное произведение L=CX (3), систему линейных уравнений (2) заменить одним матричным уравнением AX=B (4), а условия x1≥0, x2≥0, ...xn≥0 записать в виде X≥0 (5). Поэтому часто основную задачу линейного программирования кратко записывают как задачу минимизации линейной формы (3) при линейных ограничениях (4) и (5).