
- •Начертательная геометрия
- •Инженерная графика
- •Содержание введение ………………………………………………………………………………………………... 4
- •2.2. Положение прямой линии относительно плоскостей проекций.
- •2.3. Определение натуральной величины отрезка прямой общего
- •Развертки ………………………………………………………………………………………….. .. 70
- •Введение
- •1. Метод проекций
- •1.1. Центральные проекции.
- •1.2. Параллельные проекции.
- •1.3. Свойства центральных и параллельных проекций.
- •1.4. Метод Монжа.
- •1.5. Проецирование на две взаимно перпендикулярные плоскости проекций
- •1.6. Проецирование на три взаимно перпендикулярные плоскости проекций
- •1.7. Ортогональные проекции и система прямоугольных координат.
- •1.8. Точки в четвертях и октантах пространства.
- •2. Проецирование отрезка прямой линии
- •2.1. Проецирование отрезка прямой.
- •2.2. Положение прямой линии относительно плоскостей проекций. Особые
- •2.3. Определение натуральной величины отрезка прямой общего положения и
- •2.4. Взаимное положение прямых
- •3. Плоскость
- •3.1. Способы задания плоскости на чертеже
- •3.2. Положение плоскости относительно плоскостей проекций
- •3.3. Прямая и точка в плоскости
- •3.4. Прямые особого положения в плоскости – главные линии плоскости
- •Взаимное положение прямой линии и плоскости,
- •4.1. Пересечение прямой линии с проецирующей плоскостью
- •4.2. Пересечение двух плоскостей
- •4.3. Пересечение прямой линии общего положения с плоскостью общего
- •4.4. Построение линии пересечения двух плоскостей по точкам пересечения
- •Построение взаимно параллельных прямой линии и плоскости и двух
- •Построение взаимно перпендикулярных прямой и плоскости,
- •Угол между прямой и плоскостью
- •Способы преобразования чертежа
- •5.1. Общая характеристика способов преобразования чертежа
- •5.2. Способ перемены плоскостей проекций
- •5.3. Способ вращения
- •6. Кривые линии
- •6.1. Общие сведения о кривых линиях и их проецировании
- •6.2. Построение проекций окружности
- •6.3. Построение проекций цилиндрической винтовой линии
- •7. Поверхности
- •7.1. Общие сведения о поверхностях и их изображении на чертежах
- •Чертеж гиперболического параболоида, называемого косой плоскостью, приведен на рисунке 7.6.
- •7.2. Винтовые поверхности
- •7.3. Поверхности и тела вращения
- •8. Изображение многогранников
- •8.1. Применение многогранников в технике
- •8.2. Чертежи призмы и пирамиды
- •8.3. Пример определения высоты пирамиды и угла между ее гранями
- •8.4. Пересечение многогранников плоскостью
- •8.5. Построение точек пересечения прямой с поверхностью многогранника
- •8.6. Взаимное пересечение многогранников
- •8.7. Развертка гранных поверхностей
- •9. Пересечение поверхностей плоскостью и прямой линией, развертки.
- •9.1. Общие приемы построения линии пересечения поверхности плоскостью
- •9.2. Пересечение цилиндрической поверхности плоскостью. Построение развертки
- •9.3. Пересечение конической поверхности плоскостью. Построение развертки
- •Развертка боковой поверхности прямого кругового конуса представляет собой круговой
- •Конуса. Построение сектора (рис. 9.9) выполняют с разбивкой его на равные части соответственно разметке образующих на чертеже (см. Рис. 9.8 конуса).
- •9.4. Пересечение сферы и тора плоскостью. Пример построения линии среза на
- •9.5. Пересечение прямой линии с поверхностью.
- •10. Пересечение поверхностей
- •10.1. Общие сведения о пересечении поверхностей
- •Повторяя такие построения многократно с помощью аналогичных вспомогательных поверхностей, находят необходимое число общих точек двух поверхностей для проведения линии
- •Нии пересечения поверхностей:
- •10.2. Применение вспомогательных секущих плоскостей
- •10.3. Применение вспомогательных сфер с постоянным центром
- •10.4. Применение вспомогательных сфер с переменным центром
- •10.5. Некоторые особые случаи пересечения поверхностей
- •10. Аксонометрические проекции
Развертка боковой поверхности прямого кругового конуса представляет собой круговой
сектор
с углом
180°
при вершине, где d
– диаметр основания, l
– длина образующей
Конуса. Построение сектора (рис. 9.9) выполняют с разбивкой его на равные части соответственно разметке образующих на чертеже (см. Рис. 9.8 конуса).
Рис.9.9
Используя положение образующих на чертеже и на развертке, находят положение точек на развертке при помощи натуральных величин отрезков от вершины до соответствующих точек линии пересечения на чертеже. При этом расстояния S0A0 и S0B0 соответствуют фронтальным проекциям s'a', s'b'. Отрезки образующих от вершины до других точек проецируются на фронтальную плоскость проекций с искажениями. Поэтому их натуральную величину находят вращением вокруг оси конуса до положения, параллельного фронтальной плоскости проекций. Например, положение точки D0 на развертке найдено при помощи отрезка s'd'1 – натуральной величины образующей от вершины S до точки D, точки Е0 – при помощи отрезка s'e'1 (или s"e'').
Полная развертка поверхности усеченного конуса состоит из трех частей: 1) развертки боковой поверхности, ограниченной дугой окружности радиуса l, кривой B0Q0F0E0D0C0A0 и симметрично ей; 2) .круга основания; 3) натурального вида фигуры сечения.
На рисунке 9.8 показано построение фронтальной и горизонтальной проекций точки К по изображению К0 этой точки на развертке (см. рис. 9.9). Для построения проведена образующая S0130 через точку К0 на развертке. С помощью отрезка l1, построена горизонтальная проекция 13. Через нее проведены горизонтальная s–13 и фронтальная s'–13' проекции образующей S–13. Отрезок S0K0 = s'k'1 отмечен на проекции образующей s'7'. Обратным вращением построена фронтальная проекция k' точки К на фронтальной проекции образующей s'13'. Горизонтальная проекция k построена с помощью линии связи.
9.4. Пересечение сферы и тора плоскостью. Пример построения линии среза на
поверхности тела вращения сложной формы.
Пересечение сферы плоскостью. Плоскость всегда пересекает сферу по окружности, которая проецируется в виде отрезка прямой, в виде эллипса или в виде окружности в зависимости от положения секущей плоскости по отношению к плоскости проекции. Так, на рисунке 9.10 изображены проекции линий пересечения сферы и плоскостей горизонтальной P (Pv) и фронтальной S (Sh). Они пересекают сферу по окружности с центрами С (c' с, с") и С\ (с'1 с1 с"1) с проекциями в виде окружности и отрезка прямой.
Рис.9.10 Рис. 9.11
В примере, приведенном на рисунке 9.11, горизонтальная и профильная проекции линии пересечения сферы фронтально-проецирующей плоскостью – эллипсы, длины больших осей которых cd и c"d" paвны величине диаметра окружности (a'b'). Малые оси эллипсов ab и a"'b" получают проецированием. На рисунке 9.11 показано построение проекций некоторых точек. Проекции с и d построены на горизонтальной проекции параллели радиуса 0 – 1, построенной с помощью проекции 1' . Проекции с" и d" построены на профильной проекции окружности, проведенной на сфере через проекции с' (d') так, что плоскость окружности параллельна плоскости проекций. Проекция e является точкой касания эллипса (горизонтальной проекции окружности среза) и экватора сферы. Она построена в проекционной связи на горизонтальной проекции экватора по фронтальной проекции e'. Горизонтальная проекция m произвольной точки на линии среза построена с помощью параллели радиуса 0 – 2, фронтальная проекция которой проходит через проекции m' и 2'. Проекция f" является точкой касания эллипса (профильной проекции окружности среза) и профильной проекции очерка сферы.
Если плоскость, пересекающая сферу, является плоскостью общего положения, то задачу решают способом перемены плоскостей проекций. Дополнительную плоскость проекций выбирают так, чтобы обеспечить перпендикулярность ее и секущей плоскости. Это позволяет упростить построение линии пересечения.
Линию пересечения тора плоскостью в общем случае строят при помощи вспомогательных плоскостей, пересекающих тор и секущую плоскость. При этом подбирают плоскости, пересекающие тор по окружности, т. е. расположенные перпендикулярно оси тора или проходящие через его ось.
В примере на рисунке 9.12 показано применение вспомогательных плоскостей T1 (T1v) и T2 (T2v), перпендикулярных к оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью P (Рw).
Тор на рисунке 9.12 имеет два изображения – фронтальную проекцию и половину профильной проекции. Полуокружность радиуса R1 (профильная проекция линии пересечения тора вспомогательной плоскостью T1) касается проекции плоскости P (следа Pw). Тем самым
определяются профильная проекция 3" (o"3" Pw) и по ней фронтальная проекция 3' одной из точек проекции искомой линии пересечения.
Рис.9.12
Полуокружность радиуса R2 – профильная проекция линии пересечения тора вспомогательной плоскостью Т2. Она пересекает профильную проекцию плоскости P (след Рw) в двух точках 5" и 7" – профильных проекциях точек линии пересечения. Проводя аналогичные построения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натуральной величины сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l1, и l2 на фронтальной проекции для нанесения точек 50, 70 и 30 . Точки 60, 80 и 40 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается алгебраическим уравнением 4-го порядка.
Кривые пересечения тора с плоскостью, параллельной оси, приведены на рисунке 9.13. Они имеют общее название – кривые Персея (Персей – геометр Древней Греции). Это кривые 4-го порядка. Вид кривых зависит от расстояния секущей плоскости до оси тора.
Рис.9.13
Многие детали приборов и машин имеют в своей основе форму тела вращения со сложной формой поверхности. Такое тело можно рассматривать как состоящее из частей элементарных тел вращения – цилиндра, конуса, сферы и тора или кругового кольца. Детали из такого тела вращения часто конструируют путем среза части тела плоскостью, параллельной оси. При этом в пересечении поверхности тела с плоскостью среза образуются сложные линии, построение которых и рассмотрено ниже. Эти линии, являющиеся частным случаем линии пересечения поверхности вращения с плоскостью (плоскость параллельна оси), называются линиями среза.