
- •Начертательная геометрия
- •Инженерная графика
- •Содержание введение ………………………………………………………………………………………………... 4
- •2.2. Положение прямой линии относительно плоскостей проекций.
- •2.3. Определение натуральной величины отрезка прямой общего
- •Развертки ………………………………………………………………………………………….. .. 70
- •Введение
- •1. Метод проекций
- •1.1. Центральные проекции.
- •1.2. Параллельные проекции.
- •1.3. Свойства центральных и параллельных проекций.
- •1.4. Метод Монжа.
- •1.5. Проецирование на две взаимно перпендикулярные плоскости проекций
- •1.6. Проецирование на три взаимно перпендикулярные плоскости проекций
- •1.7. Ортогональные проекции и система прямоугольных координат.
- •1.8. Точки в четвертях и октантах пространства.
- •2. Проецирование отрезка прямой линии
- •2.1. Проецирование отрезка прямой.
- •2.2. Положение прямой линии относительно плоскостей проекций. Особые
- •2.3. Определение натуральной величины отрезка прямой общего положения и
- •2.4. Взаимное положение прямых
- •3. Плоскость
- •3.1. Способы задания плоскости на чертеже
- •3.2. Положение плоскости относительно плоскостей проекций
- •3.3. Прямая и точка в плоскости
- •3.4. Прямые особого положения в плоскости – главные линии плоскости
- •Взаимное положение прямой линии и плоскости,
- •4.1. Пересечение прямой линии с проецирующей плоскостью
- •4.2. Пересечение двух плоскостей
- •4.3. Пересечение прямой линии общего положения с плоскостью общего
- •4.4. Построение линии пересечения двух плоскостей по точкам пересечения
- •Построение взаимно параллельных прямой линии и плоскости и двух
- •Построение взаимно перпендикулярных прямой и плоскости,
- •Угол между прямой и плоскостью
- •Способы преобразования чертежа
- •5.1. Общая характеристика способов преобразования чертежа
- •5.2. Способ перемены плоскостей проекций
- •5.3. Способ вращения
- •6. Кривые линии
- •6.1. Общие сведения о кривых линиях и их проецировании
- •6.2. Построение проекций окружности
- •6.3. Построение проекций цилиндрической винтовой линии
- •7. Поверхности
- •7.1. Общие сведения о поверхностях и их изображении на чертежах
- •Чертеж гиперболического параболоида, называемого косой плоскостью, приведен на рисунке 7.6.
- •7.2. Винтовые поверхности
- •7.3. Поверхности и тела вращения
- •8. Изображение многогранников
- •8.1. Применение многогранников в технике
- •8.2. Чертежи призмы и пирамиды
- •8.3. Пример определения высоты пирамиды и угла между ее гранями
- •8.4. Пересечение многогранников плоскостью
- •8.5. Построение точек пересечения прямой с поверхностью многогранника
- •8.6. Взаимное пересечение многогранников
- •8.7. Развертка гранных поверхностей
- •9. Пересечение поверхностей плоскостью и прямой линией, развертки.
- •9.1. Общие приемы построения линии пересечения поверхности плоскостью
- •9.2. Пересечение цилиндрической поверхности плоскостью. Построение развертки
- •9.3. Пересечение конической поверхности плоскостью. Построение развертки
- •Развертка боковой поверхности прямого кругового конуса представляет собой круговой
- •Конуса. Построение сектора (рис. 9.9) выполняют с разбивкой его на равные части соответственно разметке образующих на чертеже (см. Рис. 9.8 конуса).
- •9.4. Пересечение сферы и тора плоскостью. Пример построения линии среза на
- •9.5. Пересечение прямой линии с поверхностью.
- •10. Пересечение поверхностей
- •10.1. Общие сведения о пересечении поверхностей
- •Повторяя такие построения многократно с помощью аналогичных вспомогательных поверхностей, находят необходимое число общих точек двух поверхностей для проведения линии
- •Нии пересечения поверхностей:
- •10.2. Применение вспомогательных секущих плоскостей
- •10.3. Применение вспомогательных сфер с постоянным центром
- •10.4. Применение вспомогательных сфер с переменным центром
- •10.5. Некоторые особые случаи пересечения поверхностей
- •10. Аксонометрические проекции
Построение взаимно перпендикулярных прямой и плоскости,
двух плоскостей и двух прямых
Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости (на рис. 4.17 (AB) P, (AB) (DC), (AB) (EF)). Из множества этих прямых при построении перпендикуляра к плоскости на чертеже выбирают фронталь и горизонталь плоскости, так как при этом образуются прямые углы, одна из сторон которых параллельна плоскости проекций.
Рис. 4.17 Рис.4.18 Рис. 4.19
В этом случае на чертеже фронтальную проекцию перпендикуляра проводят под углом 90° к фронтальной проекции фронтали, а горизонтальную проекцию перпендикуляра – под углом 90° к горизонтальной проекции горизонтали (см. 1.3).
Пример построения проекций a'm', am прямой, перпендикулярной плоскости треугольника с проекциями a'b'c', abc, приведен на рисунке 4.18
Фронтальная проекция a'm' прямой построена перпендикулярно фронтальной проекции a'2' фронтали, горизонтальная проекция am – перпендикулярно горизонтальной проекции а–1 горизонтали плоскости.
Пример построения на чертеже плоскости, перпендикулярной прямой, заданной проекциями a'k', ak, приведен на рисунке 4.19. Из проекций k', k проведены проекции k'f' a'k', kf || х фронтали и проекции kh ak, k'h' || х горизонтали. Они и определяют положение плоскости.
Построение двух взаимно перпендикулярных плоскостей. Как известно, плоскости перпендикулярны, если прямая, принадлежащая одной плоскости, перпендикулярна другой плоскости (рис. 4.20) (AB Q, AB пл.P, пл. Q пл. P). Построение проекций плоскости P, проходящей через прямую с проекциями m'n', mn и перпендикулярной плоскости, заданной проекциями a'b'c', abc треугольника, показано на рисунке 4.21. Для построения на чертеже плоскости через проекции e', e точки прямой проведены проекции e'f', ef перпендикуляра к плоскости треугольника. Две пересекающиеся прямые определяют положение искомой плоскости, перпендикулярной к заданной. Заметим, что построение проекций e'f' и еf перпендикуляра к заданной плоскости облегчено тем, что стороны треугольника с проекциями a'b', ab – фронталь, a'c', ас – горизонталь.
Рис. 4.20 Рис. 4.21 Рис. 4.22
На рисунке 4.22 показано построение плоскости P, перпендикулярной к плоскости треугольника с проекциями a'b'c', abc. Плоскость P, заданная следами Pv, Ph, построена перпендикулярно к горизонтали с проекциями a'1' , а–1 треугольника (Ph a – 1). B этом случае плоскость Р перпендикулярна и плоскости H (Ph х), так как горизонталь с проекциями a'1', а–1 параллельна ей.
Построение двух перпендикулярных прямых общего положения выполняют с помощью плоскости, перпендикулярной к одной из них. Через точку пересечения прямой и перпендикулярной к ней плоскости проводят в плоскости любую прямую, которая и будет перпендикулярна к заданной прямой.