- •А кадемия управления при Президенте Республики Беларусь
- •Курс лекций
- •Введение Лекция 1. Основы математической логики
- •Высказывания и логические связки
- •Контрольные вопросы к теме:
- •Элементарная математика Лекция 2. Элементы теории множеств.
- •Основные понятия.
- •Основные операции над множествами
- •Отображения.
- •Отношения эквивалентности и упорядоченности
- •Контрольные вопросы к теме
- •Лекция 3. Числовые множества.
- •Основные понятия
- •Соединения. Бином Ньютона.
- •Комплексные числа
- •Операции над комплексными числами
- •Формула Муавра. Извлечение корня из комплексного числа.
- •Контрольные вопросы к теме
- •Аналитическая геометрия
- •Лекция 4. Векторы
- •Основные понятия
- •Линейные операции над векторами
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •Направляющие косинусы
- •Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Контрольные вопросы к теме
- •Лекция 5. Прямая
- •Основные понятия
- •Взаимное расположение прямых
- •Контрольные вопросы к теме
- •Лекция 6. Плоскость
- •Основные понятия
- •Нормальное уравнение плоскости
- •Взаимное расположение плоскостей
- •Контрольные вопросы к теме
- •Лекция 7. Кривые второго порядка
- •Гипербола
- •Парабола
- •Исследование на плоскости уравнения второй степени
- •Контрольные вопросы к теме
- •Линейная алгебра Лекция 8. Понятие евклидова пространства.
- •– Мерные векторы
- •Коллинеарные векторы
- •Размерность и базис векторного пространства
- •Контрольные вопросы к теме
- •Лекция 9. Матрицы
- •Основные понятия
- •Операции над матрицами
- •Определитель матрицы
- •Ранг матрицы
- •Обратная матрица
- •Контрольные вопросы к теме
- •Лекция 10. *Понятие линейного оператора*
- •Переход к новому базису
- •Линейное преобразование переменных
- •Собственные значения и собственные вектора матриц
- •Контрольные вопросы к теме
- •Лекция 11. Многочлены
- •Основные понятия
- •Теорема о делении с остатком.
- •Теорема Безу.
- •Контрольные вопросы к теме
- •Понятие квадратичной формы.
- •Канонический базис квадратичной формы
- •Канонический базис из собственных векторов матрицы квадратичной формы
- •Канонический базис Якоби квадратичной формы .
- •Положительно и отрицательно определенные квадратичные формы
- •Квадратичная форма положительно определена тогда и только тогда, когда , ,…, .
- •Квадратичная форма отрицательно определена тогда и только тогда, когда , ,…, .
- •Квадратичная форма положительно определена тогда и только тогда, когда все собственные значения матрицы положительны.
- •Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны
- •Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- •Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
- •Применение квадратичных форм к исследованию кривых второго прядка.
- •Контрольные вопросы к теме
- •Лекция 13. Системы линейных уравнений
- •Основные понятия
- •Критерий совместности системы линейных уравнений
- •Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •Однородные системы уравнений.
- •Разрешенные системы линейных уравнений
- •Можно построить решение системы уравнений, у которого значения свободных переменных будут равны соответственно ;
- •Если у решений и системы уравнений значения свободных переменных совпадают, то и сами решения совпадают.
- •Контрольные вопросы к теме
- •Лекция 14. *Основы линейного программирования*
- •Линейное программирование
- •Задача линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме.
- •Множества допустимых решений
- •Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками.
- •Симплекс-метод с естественным базисом.
- •Симплексный метод с искусственным базисом (м-метод).
- •Теория двойственности.
- •Теоремы двойственности
- •Контрольные вопросы к теме
- •Экзаменационные вопросы
- •Литература
Симплексный метод с искусственным базисом (м-метод).
Симплексный метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи линейного программирования, записанной в канонической форме.
М-метод заключается в применении правил симплекс-метода к так называемой М-задаче. Она получается из исходной добавлением к левой части системы уравнений в канонической форме исходной задачи линейного программирования таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае её максимизации слагаемое, представляющее собой произведение числа (–М) на сумму искусственных переменных, где М – достаточно большое положительное число.
В
полученной задаче первоначальный
опорный план очевиден. При применении
к этой задаче симплекс-метода оценки
теперь будут зависеть от числа М.
Для сравнения оценок нужно помнить, что
М – достаточно большое
положительное число, поэтому из базиса
будут выводиться в первую очередь
искусственные переменные.
В процессе решения М–задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если оптимальное решение М–задачи содержит искусственные векторы или М–задача неразрешима, то исходная задача также неразрешима.
Путем преобразований число вводимых переменных, составляющих искусственный базис, может быть уменьшено до одной.
Теория двойственности.
Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.
Любую задачу линейного программирования можно записать в виде
Первоначальная задача называется исходной или прямой.
Модель двойственной задачи имеет вид:
Переменные
двойственной задачи
называют объективно обусловленными
оценками или двойственными
оценками.
Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи – на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид
,
а в задаче на минимум – вид
;матрица
составленная из коэффициентов при
неизвестных в системе ограничений
исходной задачи, и аналогичная матрица
в двойственной задаче получаются друг
из друга транспонированием;Число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче;
Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи;
Каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства , соответствует переменная, связанная условием неотрицательности. Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.
Математические модели пары двойственных задач могут быть симметричными и несимметричными. В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной – в виде неравенств, причем переменные в двойственной задаче могут быть и отрицательными. В симметричных двойственных задачах система ограничений как исходной, так и двойственной задачи задается в виде неравенств, причем на двойственные переменные налагается условие неотрицательности.
Исходная задача |
Двойственная задача |
Симметричные пары |
|
|
|
|
|
Несимметричные пары |
|
|
|
|
|
где
,
.
,
Рассмотрим пример, показывающий, как в реальной экономической ситуации появляются взаимно двойственные задачи линейного программирования.
На некотором предприятии после выполнения годового плана возник вопрос: как поступить с остатками сырья? Из оставшегося сырья можно наладить производство продукции и реализовать его или продать сырье.
Предположим,
что имеется два вида сырья
и
,
остатки которого составляют соответственно
35 и 20 единиц. Из этого сырья можно наладить
производство трех видов товаров:
,
и
.
Виды товаров |
|
|
Прибыль |
|
1 |
2 |
7 |
|
1 |
1 |
6 |
|
5 |
2 |
18 |
Запасы |
35 |
20 |
|
При
исследовании первой возможности
(наладить выпуск товаров
,
и
)
возникает вопрос о плане выпуска, который
задается тремя переменными
,
и
,
которые соответствуют количеству
произведенного товара. Эти переменные
должны удовлетворять условиям:
Прибыль, которую получит предприятие от реализации товара, составит
В интересах предприятия эту прибыль максимизировать.
Это прямая задача.
Объективно
обусловленными оценками двойственной
задачи
и
будут цены по которым целесообразно
продавать излишки сырья, т.е. при продаже
сырья по ценам ниже
и
предприятие будет терпеть убытки.
Справедливое
требование со стороны продающего
предприятия состоит в следующем: если
взять сырье, идущее на производство
единицы товара
,
то выручка от его продажи должна быть
не меньше, чем прибыль от реализации
готового изделия (в противном случае
нет смысла продавать сырьё – целесообразнее
изготовить товар и получить прибыль от
его реализации).
Это требование можно представить в виде системы неравенств:
В левой части каждого неравенства предполагаемая выручка от продажи сырья, необходимого для производства единицы товара , а в правой – прибыль от реализации этой единицы товара.
Что
касается покупателя, то он заинтересован
в минимизации расходов на покупку сырья,
т.е. величины
.
