Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
18-34.docx
Скачиваний:
40
Добавлен:
16.04.2019
Размер:
541.12 Кб
Скачать

25)Эффект Комптона и его теория. Единстзо корпускулярных и волновых свойств электромагнитного излучения.

В 1923 г. американский физик А. Комптон (1892—1962) обнаружил, что при рассеянии монохроматических рентгеновских лучей «легкими» веще­ствами* наряду с исходной длиной волны Я в рассеянных лучах содержатся также лучи с большей длиной волны Я' (эффект Комптона). Схема опыта Комптона показана на рис. 9.9. Узкий пучок лучей, выделяемый диафрагмами di и D2, падал на мишень из рассеивающего вещества. С помощью рентгеновского спектрографа измерялись длина волны К' рассеянных под углом 0 лучей и их интенсивность. Было установлено, что разность ДЯ = Я' — Я не зависит ни от природы рассеивающего вещества, ни от длины Я падающих лучей, а зависит только от угла рассеяния б, образуемого/направлениями падающих и рассеянных лу­чей. Эта экспериментально найденная зависимость имеет следующий вид:

эффект Комптона,

λк—комптоновская длина волны.

Было также замечено, что интенсивность рассеянных лучей больше для веществ с малой атомной массой и мень­ше для веществ с большой атомной массой. Интенсивность рассеянного пучка растет с увеличением угла рассеяния Θ.

Э лементарная теория эффекта Комптона.

О бнаруженная на опыте независимость величины от рода вещества указывает на то, что рассеяние рентгеновских лучей происходит на внешних электронах атомов, которые слабо связаны с атомами рассеивающего вещества. Оцен­ки показывают, что энергия рентгеновских квантов значи­тельно больше энергии связи внешних электронов в ато­мах. Поэтому с достаточной степенью точности можно считать, что рассеяние рентгеновских квантов происходит на «свободных» электронах в отличие от фотонов, которые при фотоэффекте рассеиваются на «связанных» электро­нах (для фотона hv ~ A, A — работа выхода).

Для вывода формулы (9.31) предположим, что нале­тающий рентгеновский фотон упруго взаимодействует с покоящимся «свободным» электроном мишени (рис. 9.10, а). Поскольку энергия налетающего фотона сравнима с энергией покоя электрона hv~m0c2), при использова­нии законов сохранения нужно энергию и импульс элек­трона определять по формулам релятивистской механики

после ввзаимодействия электрон начинает двигаться с некоторой скоростью (его называют электроном отдачи) под углом ф к направлению налетающего фотона (рис. 9.10, б), а рассеянный на угол 0 фотон будет иметь импульс РФ = М'.

В соответствии с законами сохранения импульса и энергии в системе фотон — электрон запишем систему двух уравнений (закон сохранения импульса графически иллюстрируется на рис. 9.10, в): — закон сохранения импульса;

(9.32) — закон

сохранения энергии.

Если из первого и второго уравнений системы выразить квадрат импульса электрона отдачи, то получатся следую­щие два уравнения:

Приравнивая эти выражения, получаем

Поскольку из формулы (9.35) после простых преобразований получим

Из сопоставления с зависимостью (9.31) получаем вы­ражение для комптоновской длины волны при рассеянии на электронах:

Из приведенных расчетов следует, что в эффекте Комптона отчетливо проявляются корпускулярные свойства света.

Рассмотренные в этой главе явления - излучение черного тела, фотоэффект, эффект Комптона - служат доказательством квантовых (корпускулярных) представлении о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств -непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга. Основные уравнения (см. § 205), связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами (частота или длина волны):

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживаются волновые свойства света (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решетки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей распространения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещенность экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещенность пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]