- •1. Рациональные уравнения и методы их решения
- •Методы их решения
- •Функциональные методы
- •2. Рациональные неравенства и методы их решения
- •Алгебраические неравенства.
- •3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- •Основные свойства модуля:
- •I тип уравнений
- •II тип уравнений
- •III тип уравнений
- •4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- •1 Способ. Использование геометрического смысла модуля.
- •5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- •Преобразования, приводящие к равносильному уравнению
- •6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- •7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- •Совокупности уравнений
- •8. Системы и совокупности неравенств
- •Основные методы решения систем двух неравенств с двумя неизвестными
- •9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- •10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- •11. Показательные уравнения. Основные методы решения показательных уравнений
- •12. Показательные неравенства. Основные методы решения показательных неравенств.
- •13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- •14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- •15. Основные методы решения тригонометрических уравнений
- •2. Способ замены.
- •3. Разложение на множители.
- •4. Однородные тригонометрические уравнения вида
- •5. Универсальная замена.
- •16. Основные методы решения тригонометрических неравенств
- •17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- •18. Метод интервалов при решении тригонометрических неравенств
- •19. Графики функций и уравнений. Основные преобразования графиков функций
- •1) Область определения функции и область значений функции.
- •3) Пересечение с осями коорд.
- •6) Точки экстремума
- •7) Периодическость функции.
- •21. Основные тригонометрические функции и их св-ва
- •22. Обратные тригонометрические функции, графики, свойства
- •24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- •25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- •26. Методы решения уравнения . Методы решения неравенства
- •27. Обобщающий метод интервалов для решения неравенств
- •Основные соотношения между элементами треугольника
- •2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- •3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- •4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- •5. Метод площадей.
- •6.Теорема Чевы
- •7.Теорема Менелая
- •8. Теорема Пифагора. Обобщенная теорема Пифагора.
- •9.Метрические соотношения в окружности. Свойства хорд
- •Свойства хорд
- •10. Свойства секущих и касательных к окружности.
- •11. Измерение углов, связанных с окружностью
- •12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- •13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- •14. Прямая Эйлера
- •15. Окружность Эйлера
- •16. Вневписанная окружность.
- •17. Основные виды четырехугольников, их св-ва и признаки
- •18. Вписанные четырехугольники. Вписанные многоугольники
- •19. Описанные четырехугольники. Описанные многоугольники
- •20. Теорема Пифагора для четырехугольников.
- •21. Теорема Птолемея.
- •1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- •2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- •3.Методы построения сечений многогранников.
- •5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- •Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.
5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
Уравнение – это равенство содержащее 1 или несколько переменных, которое истинно при одних значениях переменных и ложно при других их значениях.
Решить уравнение – значит найти все значения переменных, при которых это утверждение превращается в верное числовое равенство, или доказать, что таких значений не существует.
Уравнением
с одним неизвестным
называется равенство
(где
заданные
функции), в котором требуется найти все
значения
,
при которых данное равенство является
верным. В частности, может быть
.
Корнем (или решением) уравнения называется всякое число , при подстановке которого в уравнение получается верное числовое равенство .
Замечание. Решение уравнения считается правильным только в том случае, если найдены все корни уравнения и в процессе решения убедительно доказано, что множество корней именно такое, как указанно в ответе. В частности, метод «угадывания» корней считается правильным, если доказано, что других корней нет.
Уравнение
вида
,
где
называется
уравнением
с параметром
,
если ставиться задача для каждого
значения параметра
найти множество его корней
.
Процесс решения уравнения – это последовательность некоторых преобразований, производимых над левой и правой частями уравнения и позволяющих заменить данное уравнение другим уравнением, решение которого известно или очевидно.
Пусть
в процессе решения уравнения
было получено уравнение
.
Говорят, что при этом произошла потеря
корней,
если существует хотя бы одно число
,
которое является корнем исходного
уравнения, но не является корнем
уравнения
.
Если преобразование уравнений может привести к потере корней, необходимо отдельно рассмотреть «выпадающие» в результате выполнения этого преобразования значения переменных, проверив их на принадлежность к множеству решений.
Число
называется посторонним
корнем
уравнения
,
если оно, являясь корнем уравнения
,
не является корнем исходного уравнения.
Равносильными называются два уравнения и , если они имеют одно и то же множество решений (или оба они не имеют корней).
Если
все корни уравнения
являются корнями уравнения
(при этом области определения уравнений
могут не совпадать), то второе уравнение
называют уравнением–следствием
первого и пишут
.
Преобразования, приводящие к равносильному уравнению
(Область
определения исходного уравнения
обозначена через
,
область определения функции
– через
,
причем предполагается, что
):
1)
;
2)
;
3)
;
4)
,
если
для любого
справедливо тождество
;
5)
,
где
;
6)
,
где
,
для
;
7)
при
для
;
8)
,
где
,
для
;
9)
,
;
10)
,
,
если
для любого
(т.е. если функции
и
имеют в области
одинаковые знаки);
11)
12)
для
;
13)
,
если
;
14)
,
если
и на области определения уравнения
.
