
- •1. Рациональные уравнения и методы их решения
- •Методы их решения
- •Функциональные методы
- •2. Рациональные неравенства и методы их решения
- •Алгебраические неравенства.
- •3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- •Основные свойства модуля:
- •I тип уравнений
- •II тип уравнений
- •III тип уравнений
- •4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- •1 Способ. Использование геометрического смысла модуля.
- •5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- •Преобразования, приводящие к равносильному уравнению
- •6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- •7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- •Совокупности уравнений
- •8. Системы и совокупности неравенств
- •Основные методы решения систем двух неравенств с двумя неизвестными
- •9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- •10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- •11. Показательные уравнения. Основные методы решения показательных уравнений
- •12. Показательные неравенства. Основные методы решения показательных неравенств.
- •13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- •14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- •15. Основные методы решения тригонометрических уравнений
- •2. Способ замены.
- •3. Разложение на множители.
- •4. Однородные тригонометрические уравнения вида
- •5. Универсальная замена.
- •16. Основные методы решения тригонометрических неравенств
- •17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- •18. Метод интервалов при решении тригонометрических неравенств
- •19. Графики функций и уравнений. Основные преобразования графиков функций
- •1) Область определения функции и область значений функции.
- •3) Пересечение с осями коорд.
- •6) Точки экстремума
- •7) Периодическость функции.
- •21. Основные тригонометрические функции и их св-ва
- •22. Обратные тригонометрические функции, графики, свойства
- •24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- •25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- •26. Методы решения уравнения . Методы решения неравенства
- •27. Обобщающий метод интервалов для решения неравенств
- •Основные соотношения между элементами треугольника
- •2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- •3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- •4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- •5. Метод площадей.
- •6.Теорема Чевы
- •7.Теорема Менелая
- •8. Теорема Пифагора. Обобщенная теорема Пифагора.
- •9.Метрические соотношения в окружности. Свойства хорд
- •Свойства хорд
- •10. Свойства секущих и касательных к окружности.
- •11. Измерение углов, связанных с окружностью
- •12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- •13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- •14. Прямая Эйлера
- •15. Окружность Эйлера
- •16. Вневписанная окружность.
- •17. Основные виды четырехугольников, их св-ва и признаки
- •18. Вписанные четырехугольники. Вписанные многоугольники
- •19. Описанные четырехугольники. Описанные многоугольники
- •20. Теорема Пифагора для четырехугольников.
- •21. Теорема Птолемея.
- •1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- •2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- •3.Методы построения сечений многогранников.
- •5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- •Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.
3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.
Свойства медиан треугольника
Медиана разбивает треугольник на два треугольника одинаковой площади.
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).
Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
Длина
медианы проведенной к стороне:
(док-во
достроением до параллелограмма и
использованием равенства в параллелограмме
удвоенной суммы квадратов сторон и
суммы квадратов диагоналей
)
Т1.
Три медианы треугольника пересекаются
в одной точке М, которая делит каждую
из них в отношении 2:1, считая от вершин
треугольника. Дано: ∆ABC,
СС1,
АА1,
ВВ1
— медианы
∆ ABC.
Доказать:
и
.
Д-во: Пусть М — точка
пересечения медиан СС1,
АА1 треугольника
ABC.
Отметим A2
— середину отрезка AM
и С2
— середину отрезка СМ. Тогда A2C2
— средняя линия треугольника
АМС. Значит,
А2
С2
|| АС
и A2C2 = 0,5*АС. С1А1 — средняя линия треугольника ABC. Значит, А1С1 || АС и А1С1 = 0,5*АС.
Четырехугольник А2С1А1С2 — параллелограмм, так как его противоположные стороны А1С1 и А2С2 равны и параллельны. Следовательно, А2М = МА1 и С2М = МC1. Это означает, что точки А2 и M делят медиану АА2 на три равные части, т. е. AM = 2МА2 . Аналогично СМ = 2MC1. Итак, точка М пересечения двух медиан АА2 и CC2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треугольника. Совершенно аналогично доказывается, что точка пересечения медиан АА1 и BB1 делит каждую из них в отношении 2:1, считая от вершин треугольника.
На
медиане АА1
такой точкой является точка М,
следовательно, точка
М и есть точка
пересечения медиан АА1
и BB1.
Таким
образом,
T2.
Докажите, что отрезки, которые соединяют
центроид с вершинами треугольника,
делят его на три равновеликие части.
Дано: ∆ABC
,
— его медианы.
Доказать:
SAMB
=
SBMC
=
SAMC.
Доказательство.
и высота, проведенная из вершины
В, у них общая.
т.к.
равны их основания
и высота, проведенная
из вершины М, у
них общая. Тогда
Аналогичным
образом доказывается, что
SAMB
= SAMC.
Таким образом,
SAMB
= SAMC
= SCMB
.
4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.
Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.
Свойства
Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
Вычисление длины биссектрисы
где:
lc — длина биссектрисы, проведённой к стороне c,
a,b,c — стороны треугольника против вершин A,B,C соответственно,
p — полупериметр треугольника,
al,bl — длины отрезков, на которые биссектриса lc делит сторону c,
α,β,γ — внутренние углы треугольника при вершинах A,B,C соответственно,
hc — высота треугольника, опущенная на сторону c.