
- •1. Рациональные уравнения и методы их решения
- •Методы их решения
- •Функциональные методы
- •2. Рациональные неравенства и методы их решения
- •Алгебраические неравенства.
- •3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- •Основные свойства модуля:
- •I тип уравнений
- •II тип уравнений
- •III тип уравнений
- •4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- •1 Способ. Использование геометрического смысла модуля.
- •5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- •Преобразования, приводящие к равносильному уравнению
- •6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- •7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- •Совокупности уравнений
- •8. Системы и совокупности неравенств
- •Основные методы решения систем двух неравенств с двумя неизвестными
- •9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- •10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- •11. Показательные уравнения. Основные методы решения показательных уравнений
- •12. Показательные неравенства. Основные методы решения показательных неравенств.
- •13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- •14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- •15. Основные методы решения тригонометрических уравнений
- •2. Способ замены.
- •3. Разложение на множители.
- •4. Однородные тригонометрические уравнения вида
- •5. Универсальная замена.
- •16. Основные методы решения тригонометрических неравенств
- •17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- •18. Метод интервалов при решении тригонометрических неравенств
- •19. Графики функций и уравнений. Основные преобразования графиков функций
- •1) Область определения функции и область значений функции.
- •3) Пересечение с осями коорд.
- •6) Точки экстремума
- •7) Периодическость функции.
- •21. Основные тригонометрические функции и их св-ва
- •22. Обратные тригонометрические функции, графики, свойства
- •24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- •25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- •26. Методы решения уравнения . Методы решения неравенства
- •27. Обобщающий метод интервалов для решения неравенств
- •Основные соотношения между элементами треугольника
- •2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- •3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- •4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- •5. Метод площадей.
- •6.Теорема Чевы
- •7.Теорема Менелая
- •8. Теорема Пифагора. Обобщенная теорема Пифагора.
- •9.Метрические соотношения в окружности. Свойства хорд
- •Свойства хорд
- •10. Свойства секущих и касательных к окружности.
- •11. Измерение углов, связанных с окружностью
- •12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- •13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- •14. Прямая Эйлера
- •15. Окружность Эйлера
- •16. Вневписанная окружность.
- •17. Основные виды четырехугольников, их св-ва и признаки
- •18. Вписанные четырехугольники. Вписанные многоугольники
- •19. Описанные четырехугольники. Описанные многоугольники
- •20. Теорема Пифагора для четырехугольников.
- •21. Теорема Птолемея.
- •1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- •2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- •3.Методы построения сечений многогранников.
- •5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- •Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.
Функциональные методы
4. Использование ограниченности функций.
Некоторые
уравнения
таковы, что при любом значении
из области его определения левая и
правая части уравнения удовлетворяют
условиям
и
соответственно, где
некоторое
число. Тогда решение уравнения сводится
к нахождению значений
,
для которых одновременно
и
.
Если же хотя бы одно из неравенств строго, то исходное уравнение не имеет решений.
5.
Использование монотонности функций.
Если
на некотором промежутке
функции
и
,
входящие в уравнение
таковы, что
непрерывна и возрастает, а
непрерывна и убывает, то равенство
возможно только при единственном
значении
,
которое и является корнем данного
уравнения на рассматриваемом промежутке.
Иногда этот корень можно найти подбором.
6. Графический метод. Иногда полезно рассмотреть эскизы графиков функций и , входящих в уравнение . Этот метод, не являющийся строгим решением, может помочь установить: а) существуют ли у данного уравнения корни и сколько их; б) на какие множества следует разбить область определения уравнения, чтобы на каждом из этих множеств использовать свой способ решения.
2. Рациональные неравенства и методы их решения
Пусть f(x)=0 числовая функция одной или нескольких переменных (аргументов). Решить неравенство f(x) < 0 (f(x) > 0) (1) - это значит найти все значения аргумента (аргументов) функции, при которых неравенство (1) справедливо. Множество всех значении аргумента (аргументов) функции, при которых неравенство (1) справедливо, называется множеством решении неравенства или просто решением неравенства.
Два неравенства считаются эквивалентными, если множества их решении совпадают.
Под множеством допустимых значений неизвестных, входящих в неравенство, понимают область определения функции f(x)=0.
Алгебраические неравенства.
Линейными (строгими и нестрогими) называются неравенства вида
ax + b > 0, ax + b < 0 (ax + b>=0, ax + b<=0)
Квадратными (строгими и нестрогими) называются неравенства вида
ax2 + bx + c > 0, ax2 + bx + c < 0,
ax2 + bx + c >= 0, ax2 + bx + c <= 0, где a, b, c – некоторые действительные числа и а ≠ 0.
Квадратное неравенство ax2 + bx + c > 0 в зависимости от значения своих коэффициентов a, b и c имеет решения:
при а > 0 и D = b2 – 4ac ≠0 , то х принадлежит интервалу
при а > 0 и D < 0 x – любое действительное число;
при а < 0 и D ≠0 x(( –х1 ; ;х1 ) );
при а < 0 и D < 0 x = ( (т. е. решении нет ).
Решение неравенства ax2 + bx + c < 0 сводится к решению рассмотренного неравенства, если обе части неравенства умножить на (–1).
Метод интервалов.(основной метод)
Находим область определения функции, затем отмечаем в этой области нули функции, которые разбивают область определения на несколько промежутков, внутри каждого из которых функция определена, непрерывна и сохраняет знак. Для определения знака функции на конкретном промежутке находим знак в любой (удобной) точке этого промежутка.
Дробно–рациональные неравенства.
Решение рационального неравенства Pn(x)/Qn(x) > 0 (5) где Рn(х) и Qm(х) (многочлены, сводится к решению эквивалентного неравенства (4) следующим образом: умножив обе части неравенства (5) на многочлен [Qm(x)]2, который положителен при всех допустимых значениях неизвестного х (т.е. при тех х, при которых Qm(x) ( 0), получим неравенство Рn(х) ( Qm(x) > 0, эквивалентное неравенству (5).
ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ
Неравенства с одной или двумя переменными можно решать графически.
Неравенство с одной переменой можно записать так: f(x) > g(x), где f(x) и g(x) – выражения, содержащие переменную.
Построим в одной системе координат графики функций y = f(x) и у = g(x).
Решение неравенства с двумя переменными f(x,y)>0 есть множество точек плоскости, координаты которых удовлетворяют этому неравенству. Рассмотрим на примерах решение некоторых неравенств с двумя переменными.