Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры ТП 2.docx
Скачиваний:
5
Добавлен:
16.04.2019
Размер:
226.71 Кб
Скачать

19. Спецификации программного обеспечения при структурном подходе

Cпецификации представляют собой полное и точное описание функций и ограничений разрабатываемого программного обеспечения. При этом одна часть спецификаций (функциональные) описывает функции разрабатываемого программного обеспечения, а другая часть (эксплуатационные) определяет требования к техническим средствам надежности информационной безопасности и т. Д

Определение отражает главные требования к спецификациям. Применительно к функциональным спецификациям подразумевается, что:

● требование полноты означает, что спецификации должны содержать всю существенную информацию, где ничего важного не было бы упущено и отсутствует несущественная информация, например детали реализации, чтобы не препятствовать разработчику в выборе наиболее эффективных решений;

● требование точности означает, что спецификации должны однозначно восприниматься как заказчиком так и разработчиком;

Последнее требование выполнить достаточно сложно в силу того, что естественный язык для описания спецификаций не подходит: даже подробные спецификации на естественном языке не обеспечивают необходимой точности. Точные спецификации можно определить, только разработав некоторую формальную модель разрабатываемого программного обеспечения.

Формальные модели, используемые на этапе определения спецификаций можно разделить на две группы: модели, зависящие от подхода к разработке (структурного или объектно-ориентированного), и модели, не зависящие от него. Так диаграммы переходов состояний, которые демонстрируют особенности поведения разрабатываемого программного обеспечения при п олучении тех или иных сигналов извне, и математические модели предметной области используют при любом подходе к разработке.

В рамках структурного подхода на этапе анализа и определения спецификаций используют три типа моделей: ориентированные на функции, ориентированные на данные и ориентированные на потоки данных. Каждую модель целесообразно использовать для своего специфического класса программных разработок.

На рис.1 показана классификация моделей разрабатываемого программного обеспечения, используемых на этапе определения спецификаций.

21. Структурное программирование

Одним из способов обеспечения высокого уровня технологичности разрабатываемого программного обеспечения является структурное программирование.

Различают три вида вычислительного процесса, реализуемого программами: линейный, разветвленный и циклический.

Линейная структура процесса вычислений предполагает, что для получения результата необходимо выполнить некоторые операции в определенной последовательности.

Разветвленная структура процесса вычислений предполагает, что конкретная последовательность операций зависит от значений одной или нескольких переменных.

Циклическая структура процесса вычислений предполагает, что для получения результата некоторые действия необходимо выполнить несколько раз.

Для реализации указанных вычислительных процессов в программах используют соответствующие управляющие операторы. Первые процедурные языки программирования высокого уровня, такие, как FORTRAN, понятием «тип вычислительного процесса» не оперировали. Для изменения линейной последовательности операторов в них, как в языках низкого уровня, использовались команды условной (при выполнении некоторого условия) и безусловной передач управления. Потому и программы, написанные на этих языках, имели запутанную структуру, присущую в настоящее время только низкоуровневым (машинным) языкам.

Именно для изображения схем алгоритмов таких программ в свое время был разработан ГОСТ 19.701-90, согласно которому каждой группе действий ставится в соответствие специальный блок (табл. 2.3). Хотя этот стандарт предусматривает блоки для обозначения циклов, он не запрещает и произвольной передачи управления, т. е. допускает использование команд условной и безусловной передачи управления при реализации алгоритма.

После того, как в 60-х годах XX в. было доказано, что любой сколь угодно сложный алгоритм можно представить с использованием трех основных управляющих конструкций, в языках программирования высокого уровня появились управляющие операторы для реализации соответствующих конструкций. Эти три конструкции принято считать базовыми. К ним относят конструкции:

• следование - обозначает последовательное выполнение действий (рис. 2.3, а);

• ветвление - соответствует выбору одного из двух вариантов действий (рис. 2.3, б);

Помимо базовых, процедурные языки программирования высокого уровня обычно используют еще три конструкции, которые можно составить из базовых:

• выбор - обозначает выбор одного варианта из нескольких в зависимости от значения некоторой величины (рис. 2.4, а);

• цикл-do - обозначает повторение некоторых действий до выполнения заданного условия, проверка которого осуществляется после выполнения действий в цикле (рис. 2.4, б);

• цикл с заданным числом повторений (счетный цикл) - обозначает повторение некоторых действий указанное количество раз (рис. 2.4, в).

Любая из дополнительных конструкций легко реализуется через базовые. Перечисленные шесть конструкций были положены в основу структурного программирования.

Перечисленные шесть конструкций были положены в основу структурного программирования.

Примечание. Слово «структурное» в данном названии подчеркиваем тот факт, что при программировании использованы только перечисленные конструкции (структуры). Отсюда и понятие «программирование без go to».

Программы, написанные с использованием только структурных операторов передачи управления, называют структурными, чтобы подчеркнуть их отличие от программ, при проектировании или реализации которых использовались низкоуровневые способы передачи управления.

Несмотря на то, что Ассемблер не предусматривает соответствующих конструкций, «структурно» можно программировать и на нем. Вернемся к примеру 2.1.

Пример 2.1 (вариант 2). Поскольку реализуемый цикл по типу «счетный» с количеством повторений п-1, используем соответствующую команду Ассемблера. Уберем и усложняющий понимание возврат на метку less, заменив его дубликатом команды сохранения текущего максимального элемента.

Полученный в результате «структурированный» вариант программы поиска максимального элемента массива приведен на рис

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]