
- •10. Анализ методик ресурсного подхода при оценке ущербов.
- •11. Оценка стоимости биотических компонентов экосистем (методика оценки группы в.Н. Большакова).
- •12. Экономические механизмы охраны окружающей природной среды. Методы расчёта ущерба (методы количественной оценки ущерба, причиняемого биосфере антропогенными воздействиями).
- •13.Взимание платы. Виды платежей за загрязнение промышленным предприятием.
- •14.Методы определения платежей за атмосферу. Плата за выбросы загрязняющих веществ в атмосферу.
- •15.Методика расчёта общего объёма платежей предприятия за загрязнение атмосферного воздуха.
- •16.Методы определения платежей за загрязнение водных ресурсов. Плата за выбросы.
- •17.Методы определения платежей за размещение отходов. Размер платы за размещение отходов.
- •18.Оценка социальной эффективности природоохранных мероприятий и программ.
- •19.Экономическая эффективность малоотходных и ресурсосберегающих производств. Классификация экономических эффектов от природоохранных мероприятий.
- •20. Экономическая эффективность малоотходных и ресурсосберегающих производств. Полный экономический эффект.
- •21.Экономическая эффективность малоотходных и ресурсосберегающих производств. Общая экономическая эффективность.
- •22. Показатели оценки природоохранной деятельности предприятий.
- •24. Введение в курс промышленной пыле-, газоочистки и переработки отходов производств. Структурно-механические и физико-химические свойства рабочих сред (пм).
- •25. Источники и виды загрязнения атмосферы. Классификация оборудования для очистки воздуха.
- •26. «Сухие» механические пылеуловители. Классификация и принцип действия.
- •Пылеосадительные камеры
- •27.«Сухие» механические пылеуловители. Инерционные пылеуловители. Инерционные пылеуловители.
- •28.«Сухие» механические пылеуловители. Циклоны, батарейные циклоны, врацающиеся пылеуловители.
- •Циклоны.
- •29. Сухие методы пылеулавливания. Механические методы (гравитационная, инерционная, центробежная сепарация).
- •30. Сухие методы пылеулавливания. Механические методы (фильтрация).
- •31. Сухие методы пылеулавливания. Физические методы (осаждение в электрическом поле и акустическая коагуляция).
- •32. Мокрые методы пылеулавливания
- •34. «Сухие» пористые фильтры. Зернистые фильтры.
- •35. Электрофильтры («сухие» и «мокрые»).
- •36. Аппараты «мокрого» пыле- и газоулавливания. Классификация способов «мокрого» пылеулавливания и их схемы.
- •37. Очистка воздуха в циклонах и центриклонах.
- •38. Очистка технической воды и промышленных стоков. Классификация методов очистки.
- •39. Механические методы очистки сточных вод (отстаивание и флотация).
- •40. Механические методы очистки сточных вод (Устройство и принцип работы установки для напорной флотационной очистки воды с рециркуляцией).
- •40.Механические методы очистки сточных вод (Устройство и принцип работы установки для напорной флотационной очистки воды с рециркуляцией).
- •41.Механические методы очистки сточных вод (Классификация гидроциклонов). Классификация гидроциклонов
- •42.Механические методы очистки сточных вод (Преимущества и недостатки открытых и напорных гидроциклонов).
- •43.Механические методы очистки сточных вод (Устройство и принцип работы гидроциклонов с винтовыми вставками. Преимущества и недостатки).
- •44.Физико-химические методы очистки сточных вод (коагуляция, флокуляция, флотация).
- •45.Физико-химические методы очистки сточных вод (адсорбция, ионный обмен).
- •46.Физико-химические методы очистки сточных вод (Устройство и принцип работы центробежной распылительной машины).
- •47.Физико-химические методы очистки сточных вод (Мембранная очистка сточных вод).
- •48.Физико-химические методы очистки сточных вод (Устройство, принцип работы, достоинства и недостатки аппаратов с трубчатыми мембранными элементами).
- •1) Внутрь трубки;
- •2) Снаружи трубки;
- •3) Одновременно внутрь и снаружи трубки.
- •49.Химические методы очистки сточных вод (нейтрализация, окисление, восстановление).
- •50.Термические методы очистки сточных вод (термическое сжигание).
- •51. Биологические методы очистки сточных вод (Основной принцип метода).
- •Биологические методы очистки сточных вод (Биологические фильтры и анаэробные схемы).
- •Защита окружающей среды от электромагнитных полей (эмп). История открытия и физические свойства эмп. Механизм эмп,
- •Механизм эмп
- •Защита окружающей среды от электромагнитных полей (эмп).
- •Защита окружающей среды от электромагнитных полей (эмп).
- •Защита окружающей среды от электромагнитных полей .
- •58. Радиационное излучение, загрязнение и защита биосферы. Механизм излучений. Действие радиации на человека.
- •59. Радиационное излучение, загрязнение и защита биосферы. Оценка и нормирование радиоактивного излучения.
- •59. Радиационное излучение, загрязнение и защита биосферы. Оценка и нормирование радиоактивного излучения.
- •Радиационное излучение, загрязнение и защита биосферы. Защита от радиоактивного излучения.
- •61.Защита окружающей среды от электромагнитных полей (эмп). Защита от микроволнового излучения (свч-печи).
- •62. Безопасность лазерного излучения. Физиологические эффекты при воздействии лазерного излучения на человека. Технико-гигиеническая оценка лазерных изделий в России.
- •Мду лазерного облучения кожных покровов
- •63. Персональный компьютер (пк) как источник электромагнитных полей (эмп).
- •64.Медицинская помощь при заболеваниях, вызванных воздействием электромагнитных полей (эмп).
- •65.Независимая гигиеническая и экологическая экспертиза электромагнитной обстановки. Прикладная методика оценки биологического действия электромагнитных полей (эмп).
- •68.Виброакустические загрязнения окружающей среды. Производственный шум. Проникновение шумов. Методы защиты от шума. Звукопоглощение.
- •69.Виброакустические загрязнения окружающей среды. Производственный шум. Проникновение шумов. Методы защиты от шума. Звукоизоляция. Индивидуальные средства защиты от шума.
- •70. Виброакустические загрязнения окружающей среды. Вибрация. Классификация вибраций.
- •71.Виброакустические загрязнения окружающей среды. Вибрация. Защита от вибраций. Виброгашение и вибропоглощение. Индивидуальные средства защиты от вибраций.
- •72. Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Физические характеристики звуковых волн.
- •73. Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Классификация шумов. Уровни звука в частотных полосах.
- •74.Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Методы расчёта снижения уровней звукового давления.
- •75. Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Звукоизоляция при нормальном и диффузионном падении звуковых волн.
- •76. Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Расчёт звукоизоляции металлических перегородок по закону массы.
- •78. Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Расчет звукоизоляции плоской перегородки по закону упругости.
- •79.Защита от шума и применение конструкционных материалов в качестве звукоизоляционых. Применение конструкционных материалов для звукоизолирующих конструкций.
- •Вопрос 80: Вибрация. Инженерно-технические средства защиты от вибрации. Методы определения вибрационного воздействия на операторов машин.
- •Вопрос 81: Вибродемпфирующие конструкционные материалы и их применение в виброизоляторах.
- •82.Виброакустические загрязнения окружающей среды. Вибрации. Камертон.
- •83.Утилизация твердых отходов. Анализ бытовых и промышленных отходов (тпбо) с точки зрения их вредности и возможности вторичного использования в качестве сырья и энергии.
- •84.Управление твёрдыми бытовыми и промышленными отходами (тпбо). Термическое обезвреживание тпбо.
- •Вопрос 85: Основные виды утилизации тпбо.
- •Вопрос 84: Управление твёрдыми бытовыми и промышленными отходами (тпбо). Термическое обезвреживание тпбо.
- •Вопрос 83: Утилизация твердых отходов. Анализ бытовых и промышленных отходов (тпбо) с точки зрения их вредности и возможности вторичного использования в качестве сырья и энергии.
- •Вопрос 86: Основные методы обезвреживания тпбо.
- •Вопрос 87: Технология мусороперерабатывающих заводов (захоронение, переработка, сортировка, прессование, вывоз).
- •Вопрос 88 Экологическое право. Общая структура закона рф об охране окружающей среды.
- •Вопрос 89: Экологическое право. Федеральный закон «Об охране окружающей среды». Раздел 1. Общие положения.
Механизм эмп
Электромагнитные поля окружают нас постоянно. Однако человек различает только видимый свет, который занимает лишь узкую полоску спектра ЭМВ — электромагнитных волн .
Рис.2.2 Электромагнитный спектр
Глаз человека не различает ЭМП, длина волны которых больше или меньше длины световой волны, поэтому мы не видим излучений промышленного оборудования, радаров, радиоантенн, линий электропередач и др. Все эти устройства, использующие электрическую энергию, излучают так называемые антропогенные ЭМП, которые вместе с естественными полями Земли и Космоса создают сложную и изменчивую электромагнитную обстановку.
Особенностью ЭМП является его деление на «ближнюю» и «дальнюю» зоны. На практике в «ближней» зоне — зоне индукции на расстоянии от источника r<X ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально r2 или r3. Поле в зоне индукции служит для формирования электромагнитной волны. «Дальняя» зона (r>ЗА.) — зона сформировавшейся электромагнитной волны, в которой интенсивность поля убывает обратно пропорционально расстоянию до источника r-1. Граница «ближней» и «дальней» зоны представлена на рисунке (2.3).
Рис. 2.3 Ближняя (1) и дальняя (2) зоны ЭМП для разных частот
Согласно теории ЭМП, «ближняя» (зона индукции) находится на расстоянии:
Где - длина волны.
с — скорость распространения волны (для вакуума или воздуха — скорость света);
f— частота электромагнитных колебаний.
«Дальняя» зона, или зона распространения (зона излучения), находится на расстоянии:
Электромагнитные поля характеризуются длиной волны λ. Источник, генерирующий излучение, т.е. создающий электромагнитные колебания, характеризуется частотой f.
Таблица 2.1 Международная классификация электромагнитных волн
Частоты |
Диапазон |
Длины волн |
Диапазон |
Крайне низкие, КНЧ Сверхнизкие, СНЧ Инфракрасные, ИНЧ Очень низкие, ОНЧ Низкие частоты, НЧ Средние, СЧ Высокие частоты, ВЧ Очень высокие, ОВЧ Ультравысокие, УВЧ Сверхвысокие, СВЧ Крайне высокие, КВЧ Гипервысокие, ГВЧ |
3-30 Гц 30-300 Гц 0,3-3 кГц 3-30 кГц 30-300 кГц 0,3-3 МГц 3-30 МГц 30-300 МГц 0,3-3 ГГц 3-30 ГГц 30-300 ГГц 300-3000 ГГц |
Декамегаметровые Мегаметровые Гектокилометровые М ириаметровые Километровые Гектометровые Декаметровые Метровые Дециметровые Сантиметровые Миллиметровые Децимиллиметровые |
100-10 Мм 10-1 Мм 1000-100 км 100-10 км 10-1 км 1-0,1 км 100-10 м 10-1 м 1-0,1 м 10-1 см 10—1 мм 1—0,1 мм |
Защита окружающей среды от электромагнитных полей (эмп).
Источники электромагнитного излучения (ЭМИ). Природные (естественные) источники ЭМИ. Техногенные (антропогенные) источники ЭМП. Электромагнитное загрязнение биосферы. Влияние ЭМП на здоровье человека. Биологическое действие электромагнитных полей.
ИСТОЧНИКИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ (ЭМИ)
Природные (естественные) источники ЭМИ
Природные (естественные) источники ЭМП делят на две группы:
Первая — поле Земли: постоянное (основное) магнитное поле (55,7 — 33,4 А/м, причем напряженность геомагнитного поля убывает от магнитных полюсов к магнитному экватору). Процессы в магнитосфере вызывают колебания геомагнитного поля в широком диапазоне частот : от 10-5 до 102 Гц, амплитуда может достигать сотых долей ампер на метр.
Вторая — радиоволны, генерируемые космическими источниками (Солнце, галактики и др.). В силу относительно низкого уровня излучения космических радиоисточников и нерегулярного характера воздействия их суммарный эффект поражения земных биообъектов незначителен.
3.2.Техногенные (антропогенные) источники ЭМП.
Первая — источники, генерирующие крайне низкие и сверхнизкие частоты от 0 Гц до 3 кГц.
Вторая — источники, генерирующие от 3 кГц до 300 ГГц, включая микроволны (СВЧ-излучение) в диапазоне от 300 МГц до 300 ГГц.
Основные источники электромагнитных излучений :
-электротранспорт (трамваи, троллейбусы, поезда…)
-линии электропередач (высоковольтные)
-электропроводка
-бытовые электроприборы
-теле- и радиостанции (транслирующие антенны)
-спутниковая и сотовая связь
-радары
-персональные компьютеры
Таблица 3.1 Некоторые техногенные источники ЭМП (ЭМИ)
Источники излучения |
Диапазоны частот излучения, волны |
1.Радиотехнические объекты 2.Радиопередающие станции 3.Радиолокационные и радионавигационные станции 4.Телевизионные станции 5.Плазменные установки 6.Термические установки 7.Высоковольтные линии электропередач 8.Рентгеновские установки 9.Лазеры 10.Мазеры 11.Технологические установки 12.Ядерные реакторы 13.Источники ЭМП специального назначения (наземные, водные, подводные, воздушные), применяемые в радиоэлектронном противодействии |
30 кГц-30 МГц 30 кГц-300 МГц СВЧ-диапазон (300 МГц-300 ГГц)
30 МГц-3 ГГц Видимый, ИК-, УФ-диапазоны Видимый, ИК-диапазон Промышленные частоты, статическое электричество
Жесткий УФ, рентгеновский диапазон, видимое свечение Оптический диапазон СВЧ-диапазон ВЧ, СВЧ, ИК, УФ, видимый, рентгеновский диапазоны Излучения рентгеновское и , γ , ИК, видимое и т. п. Радиоволны, оптический диапазон, акустические волны (комбинированность действия) |
Источники ЭМП частот 0-3 КГц
Таблица 3.2 Параметры ЭМП ЛЭП
Источник |
Е, В/м |
Н, А/м |
ЛЭП 6-35кВ |
10-500 |
0,1-2 |
ЛЭП 110 кВ |
100-3000 |
0,1-20 |
ЛЭП 330 кВ |
1000-5000 |
10-100 |
ОРУ* подстанции 500 кВ |
1000-50000 |
10-100 |
Кабель электропитания подъезда жилого дома |
≤ 300 |
В ≤20 мкТл |
* Открытое распределительное устройство
Электромагнитное загрязнение биосферы.
С развитием электроэнергетики, радио- и телевизионной техники, средств связи, электронной офисной техники, специального промышленного оборудования появилось большое количество искусственных источников электромагнитных полей (ЭМП), что обусловило интенсивное «электромагнитное загрязнение» среды обитания человека.
Биологические эффекты электромагнитных воздействий на человека зависят от :
частоты
продолжительности и интенсивности облучения
площади облучаемой поверхности
общего состояния здоровья человека
Наиболее чувствительны больные организмы, в частности, страдающие аллергическими заболеваниями или имеющие склонность к образованию опухолей. Очень опасно облучение в период эмбрионогенеза и в детском возрасте .
Длительное воздействие ЭМП на организм человека вызывает нарушение функционального состояния: нервной и сердечно-сосудистой систем, что выражается в повышенной утомляемости, снижении качества выполняемой работы, сильных болях в области сердца, изменении кровяного давления и пульса. Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения от нормального состояния центральной нервной и сердечно-сосудистой систем человека.
К субъективным ощущениям относятся: частая головная боль, сонливость или бессонница, вялость, слабость, утомляемость, рассеянность, головокружение и др. Иногда проявляется мутагенное воздействие и временная стерилизация при облучении с интенсивностями выше теплового порога .
Влияние ЭМП на здоровье человека
Широкие исследования электромагнитных полей были начаты в СССР в 60-е годы. Был накоплен большой клинический материал о неблагоприятном действии магнитных и электромагнитных полей, было предложено ввести новое нозологическое заболевание “Радиоволновая болезнь” или “Хроническое поражение микроволнами”. В дальнейшем, было установлено, что, во-первых, нервная система человека, особенно высшая нервная деятельность, чувствительна к ЭМП, и, во-вторых, что ЭМП обладает информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта. Результаты этих работ были использованы при разработке нормативных документов в России. В результате нормативы в России были установлены очень жесткими и отличались от американских и европейских в несколько тысяч раз (например, в России ПДУ для профессионалов 0,01 мВт/см2; в США - 10 мВт/см2).
Биологическое действие электромагнитных полей.
Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах.
При относительно высоких уровнях облучающего ЭМП современная теория признает тепловой механизм воздействия.
При относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия ЭМП в этом случае еще мало изучены.
Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека:
нервная
иммунная
эндокринная
половая
Эти системы организма являются критическими.
Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасны ЭМП могут быть для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков, людей с ослабленным иммунитетом.
Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности.