
- •Класификация видов движения подвижных сред и методы описания движения жидкости (методы Эйлера и Лагранжа)
- •Кинематика жидкости. Основные понятия (линия тока, элементарная струйка) и определения (живое сечение струйки, смоченный периметр).
- •Поток и его характеристики: геометрич, кинематич, и режимные
- •Уравнение неразрывности для элементарной струйки и потока реальной жидкости. Понятия массового и объемного расхода.
- •Вывод дифер. Уравнений движения идеальной жидкости (уравнений Эйлера).
- •Уравнение Бернули для потока реальной жид. И его геометрич. И энергетич. Представление. Корректив кинетич. Энергии потока. Коэф. Кориолиса.
- •Диф. Ур. Движения реальных жид. (уравнение Новье-Стокса). Критери гидродинамического подобия
- •Опоты Рейнольдса. Критерии Рейнольдса. Ламин., турб, переходной режимы
- •Расчет расхода жидкости при ламинарном режиме ( уравнение Пуазеля)
- •Течение жидкости в малом зазоре. Уравнение Петрова.
- •Понятие местного сопротивления. Основные их виды. Расчет потерь напора на их преодоление. Эквивалентная длинна местных сопротивлений.
- •Внезапное расширение потока. Расчет потерь напора (уравнение Борда)
- •Простой трубопровод. Расчет потерь напора в трубопроводе. Кривые потребного напора простого трубопровода.
- •Понятие гидравлического удара. Формула Журавского. Определение величины повышения давления при прямом полном и неполном гидравлическом ударе.
- •Истечение жидкости через отверстие в тонкой стенке при постоянном напоре.
- •Истечение жидкости через насадок. Определение глубины вакуума в насадке.
- •28, 29, 30) Основная классификация гидромашин по силовому воздействию на жидкость. Насосы. Классификация насосов. Отличительные особенности насосов объёмного и динамического типов.
- •31) Основные технические показатели насосов.
- •3 2,33) Графические характеристики центробежных насосов. Главная характеристика насоса. Рабочая область насоса.
- •34) Устройство и принцип действия центробежного насоса. Трансформация д. Бернули в центробежном насосе. Запуск насоса в работу.
- •36) Основное уравнение центробежных машин. Теоретический и действительные напоры центробежного насоса.
- •37) Совместная работа насоса и трубопровода. Глубина всасывания насоса.
- •38)Насосная установка. Определение напора развиваемого насосом.
- •40) Работа насоса на сеть. Определение положения рабочей точки насоса.
- •41) Подбор центробежного насоса по каталогам. Методика подбора насоса для простого трубопровода.
- •43) Регулирование подачи центробежного насоса изменением характеристики сети. Другие методы регулирования подачи насоса и их анализ.
- •44) Регулирование подачи насоса изменений главной характеристикой насоса. Достоинства и недостатки главного метода.
- •45)Последовательное включение насосов в насосной установке. Построение результирующей характеристики установки и определение её рабочей точки.
- •46) Паралельное включение насосов в насосной установке. Построение результирующей характеристики установки и определение её рабочей точки.
- •47) Явление кавитации в насосных установках. Кавитационный запас. Уравнение Руднёва.
- •48) Шестерённые насосы. Устройство и принцип действия, главная характеристика.
- •49) Определение производительности шестерённого насоса. Методы регулирования подачи насоса.
- •50) Устройство и область применения и принцип работы инжектора. Определение коэффициента инжекции.
44) Регулирование подачи насоса изменений главной характеристикой насоса. Достоинства и недостатки главного метода.
45)Последовательное включение насосов в насосной установке. Построение результирующей характеристики установки и определение её рабочей точки.
Центробежные насосы включают в одну систему последовательно, т.е. напорный патрубок одного насоса подключают к всасывающему патрубку второго в тех случаях, когда напор, развиваемый одним насосом, недостаточен для подачи жидкости на заданную высоту, или в тех случаях, когда последовательное включение насосов позволяет обеспечить подачу расчетного расхода при заданной характеристике системы.
Рис. 3.12. Характеристика параллельной работы в одной системе двух насосов, установленных на значительном расстоянии один от другого
46) Паралельное включение насосов в насосной установке. Построение результирующей характеристики установки и определение её рабочей точки.
Насосы в насосных станциях и крупных установках, как правило, работают совместно, т.е. несколько насосов подают жидкость в одну систему. При этом насосы могут быть включены в систему последовательно (последовательная работа) или параллельно (параллельная работа). Параллельной называют совместную одновременную работу нескольких насосов, присоединенных напорными патрубками к общей системе.
Параллельная работа центробежных насосов с одинаковыми характеристиками. На рис. 3.11, а изображена характеристика Q — H каждого из двух одинаковых насосов. Для того чтобы построить суммарную характеристику этих двух насосов при параллельной работе, необходимо удвоить абсциссы кривой Q—H одного насоса при одинаковых ординатах (напорах). Например, для нахождения точки в суммарной характеристики Q — H необходимо удвоить отрезок аб. Таким образом, отрезок ав = 2аб. Так же находят и другие точки суммарной характеристики.
Рис. 3.11. Характеристики параллельной работы двух центробежных насосов в
одной системе
а — насосы с одинаковыми характеристиками; 6 — насосы с разными характеристиками
47) Явление кавитации в насосных установках. Кавитационный запас. Уравнение Руднёва.
48) Шестерённые насосы. Устройство и принцип действия, главная характеристика.
Зубчатый (шестеренный) насос состоит из двух шестерен, расположенных в корпусе. Одна из шестерен приводится в движение расположенным на одной оси электродвигателем, а вторая получает вращение от первой благодаря плотному зацеплению зубьев. При работе жидкость захватывается зубьями колес, отжимается к стенкам корпуса и перемещается со стороны всасывания на сторону нагнетания. Переток жидкости в обратном направлении практически отсутствует из-за плотного сцепления зубьев.
Схема шестеренного насоса 1 - корпус; 2 – шестерня
Число зубьев в пределе может быть уменьшено до двух, при этом вращающиеся элементы будут иметь очертания, напоминающие восьмерку.
Шестеренные насосы являются одним из старейших представителей роторных гидромашин с вытеснителями в виде зубчатых колес.
Схема шестеренного насоса с шестернями внешнего зацепления
По характеру процесса вытеснения эти насосы относятся к классу роторно-вращательных машин, где вытесняемая жидкость, двигаясь в плоскости, перпендикулярной оси вращения, переносится из всасывающей полости в нагнетательную полость насоса. Вытеснители при этом совершают лишь вращательное движение.
Шестеренные насосы выполняются с шестерными внутреннего и внешнего зацепления. Наиболее распространенным типом шестеренного насоса является насос с шестернями внешнего зацепления. Такой насос состоит из пары защемляющихся одинаковых цилиндрических шестерен - ведущей и ведомой, помещенных в плотно охватывающий их корпус, называемый статором. Шестеренные насосы с шестернями внешнего зацепления просты по конструкции и надежны, имеют малые габариты и массу. Чаще всего применяются насосы, состоящие из пары прямозубых шестерен с одинаковым числом зубьев эвольвентного профиля. Для увеличения подачи иногда употребляются насосы с тремя и более шестернями, размещенными вокруг центральной ведущей шестерни. Для повышения давления жидкости применяют многоступенчатые шестеренные насосы. Подача каждой последующей ступени этих насосов меньше подачи предыдущей. Для отвода излишка жидкости каждая ступень имеет перепускной клапан, отрегулированный на соответствующее максимально допустимое давление. Максимальное давление, развиваемое этими насосами, обычно 10 МПа (100 а) и реже 20 МПа (200 а).
На рисунке в качестве примера приведена характеристика шестеренного насоса марки ШГ 8-25А при n=1430 об/мин.