Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы по ТАУ.doc
Скачиваний:
172
Добавлен:
16.04.2019
Размер:
12.72 Mб
Скачать

1. Безынерционное (идеальное усилительное, пропорциональное) звено

В статике и динамике описывается алгебраическим уравнением:

.

Передаточная функция звена:

.

Примерами таких безынерционных звеньев могут служить жесткие механические и гидравлические передачи, электронный усилитель на низких частотах, делитель напряжения, датчики: потенциометрические, индукционные, гироскоп и др.

Переходная функция звена представляет собой ступенчатую функцию, т.е. при

.

Функция веса . АФЧХ вырождается в точку, расположенную на вещественной оси на расстоянии от начала координат. Модуль ЧПФ постоянен на всех частотах, а фазовые сдвиги равны нулю ( ). Безынерционное звено является некоторой идеализацией реальных звеньев. Оно равномерно пропускает все частоты от 0 до .

16

2. Апериодическое (инерционное) звено первого порядка

Дифференциальное уравнение звена:

, . (3.24)

Передаточная функция звена:

,

где - коэффициент передачи,

- постоянная времени.

Примеры апериодических звеньев:

а) двигатель любого типа (электрический, гидравлический, пневматический), входной величиной является управляющее воздействие (напряжение в ЭД, расход жидкости в ГД и т.п.), выходной величиной является скорость вращения;

б) электрический генератор постоянного тока, входной величиной которого является напряжение, подводимое к обмотке возбуждения, а выходной – напряжение якоря;

в) резервуар с газом, у которого входная величина представляет собой давление перед впускным отверстием, а выходная - давление в резервуаре;

г) нагревательная печь, у которая входная величина – количество поступающего в единицу времени тепла - , а выходная – температура в печи - ;

д) электрические и цепи.

В установившемся режиме входная и выходная величины связаны уравнением

.

Переходная функция звена является решением дифференциального уравнения при .

,

, (3.25)

(установившийся режим).

Характеристическое уравнение:

,

откуда корень характеристического уравнения

.

Подставим и в (3.25):

. (3.26)

Найдем постоянную интегрирования , задавшись начальными условиями: при , . Из (3.26) найдем

.

Окончательно,

. (3.27)

Функция веса звена , .

На рис. (3.5) представлен график переходной функции звена, показаны параметры и , которые можно определить экспериментально из графика. Время переходного процесса в звене определяется обычно, как , когда выходное значение в звене устанавливается с ошибкой . Постоянная времени характеризует «инерционность», или «инерционное запаздывание» апериодического звена; чем она больше, тем длительнее переходный процесс в звене.

Рис. 3.5. Переходная функция инерционного звена

Частотные характеристики звена.

Частотная передаточная функция (АФЧХ) звена

.

Умножив числитель и знаменатель на комплексно-сопряженное знаменателю число, получим

,

откуда

, .

Выражение для АЧХ и ФЧХ определим, воспользовавшись правилом модулей и аргументов.

,

.

На рисунке 3.6 приведены графики АФЧХ, АЧХ и ФЧХ инерционного звена.

Рис. 3.6. Графики АФЧХ, АЧХ и ФЧХ инерционного звена

АФЧХ для положительных частот имеет вид полуокружности с диаметром, равным коэффициенту передачи . Величина постоянной времени звена определяет распределение отметок частоты вдоль кривой. На АФЧХ показаны три характерные отметки ( , , ).

Из АЧХ видно, что колебания малых частот ( ) «пропускаются» звеном с отношением амплитуд выходной и входной величин, близким к статическому коэффициенту передачи звена , а при колебания проходят со значительным ослаблением. При уменьшении постоянной времени звена АЧХ вытягивается вдоль оси частот. Говорят: увеличивается полоса пропускания частот данного звена.

Выражение для логарифмической амплитудной частотной характеристики звена имеет вид

(3.28)

Графики ЛАЧХ и ЛФЧХ апериодического звена представлены на рисунке 3.7.

Рис. 3.7. ЛАЧХ и ЛФЧХ апериодического звена

Наиболее просто, практически без вычислительной работы, строится так называемая асимптотическая ЛАЧХ. Характеристика имеет две асимптоты, пересекающиеся в точке, соответствующей сопрягающей частоте . Для частот, меньших , можно пренебречь вторым слагаемым под корнем в выражении (3.28), и тогда при :

.

Первая асимптота – прямая линия, параллельная оси частот.

Для частот больших, чем сопрягающая ( ), в выражении (3.28) можно пренебречь под корнем единицей по сравнению с . Тогда при :

,

т.е. вторая асимптота будет прямой с отрицательным наклоном –20дб/дек.

Действительная ЛАЧХ (показана пунктиром) близка к этим асимптотам. Наибольшее ее отличие будет в точке , а именно:

дБ.

В инженерных расчетах такой разницей пренебрегают и считают, что ЛАЧХ апериодического звена имеет вид ломаной линии, состоящей из двух прямых.

ЛФЧХ звена имеет симметрию относительно сопрягающей частоты и сдвиг по фазе при ( ).

17