
- •Правовые и организационные вопросы охраны труда
- •Основные законодательные акты по охране труда.
- •Правила и инструкции по охране труда.
- •Роль и задачи администрации предприятий по охране труда
- •Охрана труда женщин и молодежи
- •Органы государственного надзора и управления охраной труда.
- •Производственный травматизм и профессиональные заболевания
- •Причины производственного травматизма и профзаболеваний
- •Методы анализа травматизма.
- •Порядок расследования и учета несчастных случаев на производстве.
- •2. Расследование и учет несчастных случаев на производстве
- •3. Организация работы Комиссии по расследованию.
- •4. Отчетность о несчастных случаях и их причины
- •(День, месяц, год, час)
- •(День, месяц)
- •(Должность, имя, фамилия, п)
- •(Подпись, имя ,фамилия)
- •Объяснение по составлению акта расследования несчастного случая на производстве Акт расследования
- •Ответственность за нарушение законодательства по охране труда
- •Санитарно-гигиенические требования к размещению промышленных предприятий.
- •Метеорологические условия производственной среды.
- •Вредные вещества на производстве и пути защиты от них.
- •Средства индивидуальной защиты.
- •Средства индивидуальной защиты органов дыхания (сизод).
- •Вентиляция производственных помещений.
- •Принципиальная схема общеобменной приточной (а) и вытяжной (б) вентиляции
- •Производственное освещение.
- •Естественное освещение
- •Производственный шум и его воздействие на организм человека.
- •Защита от шума
- •Вибрация и ее воздействие на организм человека.
- •Основы электробезопасности. Действие электрического тока на организм человека.
- •Опасности, вызванные соприкосновением с токоведущими частями.
- •Основные защитные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок.
- •Освобождение от действия электрического тока.
- •Оказание первой (доврачебной) помощи.
- •Радиоактивное излучение и защита от действия радиоактивных излучений.
- •Радиационные поражения и допустимые дозы облучения.
- •Безопасность эксплуатации сосудов, работающих под давлением.
- •Баллоны, бочки и цистерны для сжатых, сжиженных и растворенных газов.
- •Методы защиты от коррозии Ингибиторы коррозии.
- •Неметаллические покрытия
- •Статическое электричество. Причины образования и накопления зарядов статического электричества в жидких углеводородах.
- •Методы предотвращения накопления электростатических зарядов.
- •Антистатические присадки.
- •Безопасность при ремонтных и очистных работах
- •3. Пропарка, промывка и продувка аппаратов и трубопроводов.
- •3. Анализ воздушной среды внутри аппаратов и трубопроводов.
- •Организация ремонтных работ
- •Проведение огневых работ
- •Проведение работ на высоте.
- •Работы внутри колонн, емкостей, колодцев и коллекторов.
- •Устройства для эвакуации огнеопасных жидкостей и газов
- •Система сбрасывания и ликвидации взрывоопасных и токсичных газов.
- •Горение веществ.
- •Температура вспышки паров.
- •Концентрационные и температурные пределы воспламенения (взрываемости)
- •Возгораемость материалов.
- •Огнетушащие вещества и способы тушения пожаров.
- •Системы защиты технологических процессов и оборудования от аварий и взрывов
- •1. Технологические способы снижения опасности взрыва.
- •2. Автоматические системы взрывозащиты.
- •Предупреждение пожаров при устройстве и эксплуатации электрических установок и проводок.
- •Возникновение и развитие пожаров в резервуарах и резервуарных парках.
- •Огнестойкость промышленных зданий и сооружений.
- •Классификация производств и производственных объектов по взрыво- и пожароопасности.
- •Противопожарное водоснабжение.
- •Огнетушители.
- •Простейший противопожарный инвентарь.
- •Молниезащита.
Статическое электричество. Причины образования и накопления зарядов статического электричества в жидких углеводородах.
Причиной многих аварий, сопровождающихся взрывами и пожарами, являются разряды статического электричества. При транспортировке жидких углеводородов по трубопроводам, при операциях смешения, фильтрации, слива, налива, очистки резервуаров зарегистрированы случаи взрывов по причине разрядов статического электричества.
В результате движения жидких углеводородов относительно другого вещества (материал трубы, резервуара) на границе раздела жидкой и твердой фаз образуется двойной электрический слой. При движении жидкостей двойной слой частично разрушается, и в жидкости накапливается избыточное количество ионов одного знака. В изолированных системах могут накапливаться значительные заряды, и при достижении сравнительно высокого потенциала происходит разряд в виде искры.
Присутствие в потоке нефтепродуктов воздуха или других нерастворимых газов, наличие небольшого количества воды, а также твердых коллоидных частиц значительно усиливают электризацию.
Применяемые в химической промышленности жидкости, в том числе жидкие углеводороды и углеводородные топлива в большинстве своем являются хорошими диэлектриками. Экспериментально установлено, что интенсивная электризация присуща жидкостям, обладающим удельным сопротивлением в пределах от 108 до 1013 Ом м. В продуктах с высоким (выше 1013 Ом м) удельным сопротивлением генерирование статистических зарядов мало.
Удельное электрическое сопротивление жидких углеводородов и некоторых материалов, в Ом м.
Бензин - 1011 - 1012
Реактивное топливо РТ – 108-1011
Дизельное топливо – 108 - 3·1012
Масло трансформаторное -1011
По величине удельных сопротивлений большинство нефтепродуктов находятся в области наивысшей электризации.
Известно, что электрические заряды в трубопроводах при перекачке нефтепродуктов образуются в случае, когда имеется некоторое количество примесей. А любая диэлектрическая жидкость, как бы хорошо она ни была очищена, всегда содержит в себе определенное количество носителей электрического заряда в виде ионов или миллионов примесей, от наличия которых и зависит удельное электрическое сопротивление.
Анализ многочисленных результатов показывает, что ток электризации в значительной мере зависит от скорости перекачки жидких углеводородов и в меньшей степени зависит от длины трубопровода.
С увеличением скорости перекачки, особенно при турбулентном режиме, статическая электризация резко возрастает на начальных участках трубопровода. Далее она практически не зависит от длины трубопровода. Таким образом, скорость перекачки является определяющим фактором статической электризации жидких углеводородов.
По мнению немецких специалистов максимально допустимая скорость перекачки нефтепродуктов определена следующей зависимостью.
V2 d ≤ 0,64 м/с
где d - диаметр трубопровода, м.
однако практика работы показывает, что скорость перекачки жидких углеводородов может быть выше и достигать 5 м/с, но для этого необходимо надежное заземление трубопроводов по всей их длине. Трубопровод должен доходить до дна заполняемой емкости. Кроме того, перед заполнением емкости скорость перекачки необходимо уменьшить, путем замена труб на трубы большого диаметра или вводом расширительной вставки.
В реальных условиях эксплуатации, чтобы обеспечить безопасные условия движения жидкости по трубопроводам, необходимо учитывать зависимость тока электризации от температуры. По имеющимся данным, температура в значительной степени влияет на электризацию потока жидкости. С падением температуры на 20°С электропроводность топлив и других нефтепродуктов может уменьшаться более чем на 50%, особенно если при охлаждении его выделяется вода.
Молекула воды характеризуется значительным дипольным моментом и имеет большую способность к электризации, поэтому она вступает инициатором образования дополнительных электростатических зарядов в топливе.
В присутствии воды процесс электризации дополнительно осложняется еще тем, что многие имеющиеся в органических жидкостях растворимые примеси вымываются водой, так как растворимость их в воде выше. Электрическое сопротивление жидкости при этом увеличивается.
Все вышесказанное относится к среде, в которой разбрызгивание жидкости не происходит. Если же технологический процесс связан с разбрызгиванием жидкости, происходит значительная дополнительная электризация. В ходе распыления струи на отдельные капельки, мелкие и крупные капли приобретают заряды противоположных знаков. В резервуаре может возникнуть облако мелких капель, несущих подобно грозовому облаку значительный электрический заряд одного знака. При определенных условиях, когда этот заряд достаточно велик, возможен электрический разряд, который может привести к воспламенению паров жидкости. Отсюда возникает естественное требование избегать заполнения резервуаров легковоспламеняющимися и горючими жидкостями свободно подающей струей.