Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры от великолепной четверки.doc
Скачиваний:
322
Добавлен:
15.04.2019
Размер:
481.28 Кб
Скачать

7.2. Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.

Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц. Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.

Инфразву́к (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0.001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Гиперзвукупругие волны с частотами от 109 до 1012—1018 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Если говорить о практическом применении ультразвука в технике, то на ум приходит бурение сверхпрочных горных пород, которые не пробурить даже титаном. В таких бурах можно распространять ультразвуковые колебания. Таким образом, происходит бурение и одновременные создание колебаний бура благодаря нанесению высокочастотных ударов по буру, которые имеют направленное воздействие в сторону бурения порды.. Так используется ультразвук для ультразвуковой гравировки, для этого используется генератор ультразвуковых колебаний подаваемых по кабелю к пьезо элементу который преобразует электрический импульс в механическое действие который в свою очередь передает волны через волновод к инструменту нанесения гравировки. Таким образом, ультразвук в технике используется в основном для усиления бурильных и режущих свойств. Ведь такое усиление многократно повышает эффективность физического воздействия на объект.

8.2. Строительные материалы. Технологии производства строительных материалов.

Строительные материалы — материалы для возведения зданий и сооружений.

Наряду со «старыми» материалами как древесина и кирпич с началом промышленной революции появились новые стройматериалы как бетон, сталь, стекло и пластмасса. В настоящее время широко используют предварительно напряжённый железобетон и металлопластик.

Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на

  • природные

  • искусственные

которые в свою очередь подразделяются на две основные категории:

к первой категории относят:

  • кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов).

ко второй категории — специального назначения:

  • гидроизоляционные, теплоизоляционные, акустические и др.

Основные виды строительных материалов и изделий

  • каменные природные строительные материалы и изделия из них

  • вяжущие материалы неорганические и органические

  • лесные материалы и изделия из них

  • металлические изделия

12.2 Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Принцип действия: Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механическим частям. Одно из преимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива — от кизяка до урана Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов. Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется. 13.2 Эффект эжекции-1.процесс смешения двух каких-либо сред,в котором одна среда, находясь под давлением, оказывает воздействие на другую и увлекает ее в требуемом направлении . 2.искусственное восстановление напора воды в период половодья и длительных паводков для нормальной работы турбин . Гироско́п — устройство, способное реагировать на изменение углов ориентации связанного с ним тела относительно инерциальной системы координат, как правило, основанное на законе сохранения вращательного момента (момента импульса). Термин впервые введен Жаном (Бернаром Леоном) Фуко в его докладе в 1852 году Французской Академии Наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим обусловлено и название «гироскоп». Центробе́жная си́ла — сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси, вокруг которой происходит вращение тела — или — в двумерном случае — от центра вращения (отсюда и название). Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.Эффект был впервые описан Кристианом Доплером в 1842 году . Кавита́ция — образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Диффузия – это перенос вещества, обусловленный беспорядочным тепловым движением диффундирующих частиц. При диффузии газа его молекулы меняют направление движения при столкновении с другими молекулами Основными типами движения при диффузии в твердых телах являются случайные периодические скачки атомов из узла кристаллической решетки в соседний узел или вакансию.Диффузионная металлизация – процесс диффузионного насыщения поверхности изделий металлами или металлоидами.

Гидростатическое давление— Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой , пропорциональной величине этой поверхности, и направленной по нормали к ней.Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах

17.2 Новые технологии передачи и хранения информации:■Исследования и разработки в фотонике и оптоинформатике, позволяющие создавать принципиально новые, полностью оптические вычислительные устройства, устройства хранения и обмена данными, так и гибридные оптические компоненты для традиционных компьютеров. ■Разработка быстродействующих электронных устройств для перспективных беспроводных сетей ■Исследования и разработки в области многопроцессорных вычислительных систем, параллельных алгоритмов. Разработка архитектур и математических алгоритмов для экзафлопныхкомпьютерв

Переменный ток - это ток, сила и направление которого изменяются во времени. Переменный ток получают, используя явление электромагнитной индукции, при котором в проводнике, пересекающем магнитное поле, возникает электродвижущая сила. Э.д.с, переменного тока определяется выражением. В связи с удобством преобразования из высокого напряжения, необходимого для передачи электроэнергии на большие расстояния, а низкое, необходимое для непосредственного использования в быту и в технике, переменный ток нашел широкое применение в промышленности и в быту. В промышленности переменный ток используется для литания электромоторов, в основном. асинхронного типа, в быту - для питания электронагревательных приборов, освещения, холодильников, бытовых электромоторов и т. п.

25.2 Металлами называются вещества, обладающие высокой теплопроводностью и электрической проводимостью; ковкостью, блеском и другими характерными свойствами.

Свойства металлов:

Твердость материала - это его способность сопротивляться пластической деформации

Электри́ческая проводи́мость (электропроводность, проводимость) — это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

Пластичностью называется способность металла принимать под действием нагрузки новую форму не разрушаясь.

Пластичность металлов определяется также при испытании на растяжение. Это свойство обнаруживается в том, что под действием нагрузки образцы разных металлов в различной степени удлиняются, а их поперечное сечение уменьшается. Чем больше способен образец удлиняться, а его пеперечное сечение сужаться, тем пластичнее металл образца.

Ковкость — способность металлов и сплавов подвергаться ковке и другим видам обработки давлением (прокатка, волочение, прессование, штамповка). Ковкость характеризуется двумя показателями — пластичностью, то есть способностью металла подвергаться деформации под давлением без разрушения, и сопротивлением деформации. У ковких металлов (сталь, латунь, дюралюминий и некоторые другие медные, алюминиевые, магниевые, никелевые сплавы) относительно высокая пластичность сочетается с низким сопротивлением деформации

Плотностью называют количество массы, находящееся в единице объема.

Плавкость металла характеризуется его температурой плавления. Легкоплавкие сплавы применяются для изготовления подшипников, отливки типографических матриц и т.п. Температуры плавления металлов существенно различаются, так, ртуть плавится при -39°C, вольфрам при +3410°C.

31.2 Материалы – это ступени нашей цивилизации, а новые материалы – это трамплин для прыжка в будущее, меняющий облик нашего бытия.

Синтетические материалы- получают это вещество с помощью химических реакций. Во время реакции происходит со- единение простых молекул в сложные. Такое соединение химики называют словом «синтез». А вещества, которые получаются в результате синтеза, называются синтетическими. Из одинаковых кирпичиков можно строить разные дома. Из простых молекул можно построить бесчисленное количество неизвестных в природе сложных веществ.

Полимеры, химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.Термопластыполимерные материалы, способные обратимо переходить при нагревании в высокоэластичное либо вязкотекучее состояние.При обычной температуре термопласты находятся в твердом состоянии. При повышении температуры они переходят в высокоэластичное и далее — в вязкотекучее состояние, что обеспечивает возможность формования их различными методами. Реактопласты (термореактивные пластмассы) — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.Эластомер— под этим термином понимают полимеры, обладающие в диапазоне эксплуатации высокоэластичными свойствами. Называют резиной или эластомером любой упругий материал, который может растягиваться до размеров, во много раз превышающих его начальную длину (Эластомерная нить), и, что существенно, возвращаться к исходному размеру, когда нагрузка снята. Не все аморфные полимеры являются эластомерами. Некоторые из них являются термопластами. Это зависит от его температуры стеклования: эластомеры обладают низкими температурами стеклования, а термопластики — высокими.

9.2 Рычаги- часто применяются во всевозможных машинах и механизмах. Равновесие рычага наступает при условии, что отношение приложенных к его концам параллельных сил обратно отношению плеч и моменты этих сил противоположны по знаку. Поэтому, прикладывая небольшую силу к длинному концу рычага, можно уравновесить гораздо большую силу, приложенную к короткому концу рычага. Подложив под тяжелое тело рычаг с очень длинным вторым плечом (рис. 139), можно приподнять тело, приложив силу, во много раз меньшую, чем вес тела. Можно сказать, что рычаг — это «преобразователь» силы: малая сила f, приложенная к концу длинного плеча, вызывает большую силу F' на конце короткого плеча. Мы получаем «выигрыш в силе».

БлокБудем считать, что он вращается в подшипниках без трения. Если веревка натянута и не скользит по блоку, то блок находится под действием двух сил натяжения веревки F1 и F2; точками приложения этих сил можно считать точки А и В на окружности блока. Условия равновесия блока, как и условия для рычага, определяются из условий равновесия моментов приложенных сил. Так как плечи сил F1 и F2 (радиусы блока ОА и ОВ) равны, то блок будет находиться в равновесии, если обе приложенные силы равны по величине

К числу простых машин относится также клин, имеющий многообразные применения. Рассмотрим действие клина (лезвия колуна) при колке дров .На тыльную поверхность клина, например при ударах кувалды, действует сила Р, вгоняющая клин в трещину ; на боковые поверхности клина действуют силы давления F со стороны раскалываемого полена. При равновесии клина сумма проекций всех приложенных к нему сил на любое направление, например на ось клина, должна равняться нулю, т. е. сила Р должна уравновешивать сумму составляющих сил F, направленных вдоль оси клина. Но клин, как и всякую простую машину, требуется не уравновесить, а заставить двигаться в нужном направлении. Только тогда он выполнит свою роль, например, расколет полено. В отличие от рычагов и блоков, при работе клина большую роль играет сила трения. В блоке и рычаге силы трения сравнительно малы. Для клина же силы трения между боковыми гранями и телом, в которое вгоняется клин, обычно очень велики, так как велики и силы давления F, и коэффициент трения между сталью и деревом, и исключать их из расчета нельзя

НАКЛОННАЯ

ПЛОСКОСТЬ

Пологая поверхность,

соединяющая нижний

уровень с верхним

уровнем.Предметы двигаются по

ней вверх или вниз

Горка, лестница, пандус,

эскалатор, уклон

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]