
- •1.Электротехнический материал. Требования, предъявляемые к электротехническим материалам.
- •2.Электрофизические процессы в металлических проводниках. Удельная теплопроводность в металлах. Влияние примеси на удельное сопротивление.
- •3.Электрофизические процессы в металлических проводниках. Зависимость между свойствами сплавов (удельное сопротивление, твердость) и их диаграммами состояния.
- •4.Электрофизические процессы в металлических проводниках. Влияние деформации на удельное сопротивление.
- •5. Электрофизические процессы в металлических проводниках. Влияние температуры на удельное сопротивление металлов.
- •6. Электрофизические процессы в металлических проводниках. Влияние размеров проводника на удельное сопротивление.
- •8. Электрофизические процессы в металлических проводниках. Эмиссионные и контактные явления в металлах.
- •9.Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Тепловое расширение.
- •10. Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Теплопроводность.
- •11.Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Теплоемкость.
- •12. Проводниковые материалы. Медь. Влияние примесей на физические свойства меди.
- •13.Проводниковые материалы. Медь. «Водородная болезнь» меди.
- •14.Проводниковые материалы. Медь. Коррозионная стойкость меди.
- •15. Проводниковые материалы. Медь. Сравнительные характеристики меди марок мт и мм
- •16. Бронзы. Состав, свойства, область применения в электротехнике.
- •17. Латуни. Состав, свойства, область применения в электротехнике.
- •18. Проводниковые материалы. Алюминий. Сравнительная характеристика алюминиевых и медных проводников. Гальваническая коррозия контакта Al и Cu.
- •19. Проводниковые материалы. Алюминий. Свойства твердой и мягкой алюминиевой проволоки.
- •21. Биметаллические проводники. Назначение, свойства.
- •22. Сверхпроводники. Влияние внешних факторов на сверхпроводимость.
- •23. Сверхпроводники 1-го и 2-го рода. Свойства, диаграммы состояния.
- •24. Сверхпроводники 3-го рода и высокотемпературные сверхпроводники. Перспективы применения в электроэнергетике.
- •25. Материалы высокого сопротивления. Манганин. Состав, свойства, применение.
- •26. Материалы высокого сопротивления. Константан. Состав, свойства, применение.
- •27. Материалы высокого сопротивления. Нагревостойкие сплавы. Состав, свойства, применение.
- •28. Основы технологии пайки металлов. Классификация припоев. Условные обозначения, свойства и назначение мягких припоев.
- •29. Основы технологии пайки металлов. Флюсы и припои для низкотемпературной пайки.
- •30. Основы технологии пайки металлов. Флюсы и припои для высокотемпературной пайки.
- •31. Общие сведения и классификация полупроводниковых металлов.
- •32. Общие сведения о собственных и примесных полупроводниках. Электропроводность собственных полупроводников.
- •33. Общие сведения о собственных и примесных полупроводниках. Электропроводность примесных полупроводников.
- •34. Виды примеси полупроводникового материала. Акцепторная примесь
- •35. Виды примеси полупроводникового материала. Донорная примесь.
- •37. Зависимость удельной электропроводности полупроводников от температуры
- •38. Диэлектрические материалы. Поляризация диэлектриков.
- •39. Диэлектрические материалы. Удельное сопротивление диэлектриков.
- •40. Диэлектрические материалы. Диэлектрические потери. Тангенс угла диэлектрических потерь.
- •41. Диэлектрические материалы. Электрическая прочность диэлекриков. Виды пробоя диэлектриков.
- •42. Нагревостойкость, классы нагревстойкости. Холодостойкость диэлектриков.
- •43. Светостойкость и тропикостойкость диэлектриков.
- •44. Классификация материалов по поведению в магнитном поле.
- •45. Основные характеристики магнитных материалов. Магнитодвижущая сила, магнитное сопротивление, напряженность магнитного поля, магнитная индукция
- •46. Магнитные материалы. Основная кривая намагничивания
- •47. Магнитные материалы. Процессы при намагничивании ферромагнетиков (петля гистерезиса).
- •48. Магнитные материалы. Поведение ферромагнетиков в переменных магнитных полях (магнитные потери).
- •49. Магнитные материалы. Области применения. Свойства.
38. Диэлектрические материалы. Поляризация диэлектриков.
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.
Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е1, направленное против внешнего поля с напряженностью Е0. Результирующая напряженность поля Е внутри диэлектрика Е=Е0-Е1.
39. Диэлектрические материалы. Удельное сопротивление диэлектриков.
Термин диэлектрик» был введен М. Фарадеем (1837) для обозначения сред, через которые проникает электростатическое поле (в отличие от металлов, которые его экранируют). Проникнув в диэлектрик, электрическое поле в нем ослабляется.
В электротехнике диэлектрики часто называют изоляторами, так как они практически не проводят электрический ток. Удельное сопротивление диэлектриков в 1012–1024 раз больше, чем у металлов. Диэлектриками при нормальных условиях являются все газы, многие чистые жидкости (включая воду), пластмассы, неметаллические кристаллы.
В достаточно сильных электрических полях в диэлектриках наступает пробой; при этом по образовавшемуся узкому каналу начинает течь ток большой плотности. Электрический пробой приводит к разрушению диэлектрика: образуется сквозное отверстие или диэлектрик проплавляется по каналу.