
- •1.Электротехнический материал. Требования, предъявляемые к электротехническим материалам.
- •2.Электрофизические процессы в металлических проводниках. Удельная теплопроводность в металлах. Влияние примеси на удельное сопротивление.
- •3.Электрофизические процессы в металлических проводниках. Зависимость между свойствами сплавов (удельное сопротивление, твердость) и их диаграммами состояния.
- •4.Электрофизические процессы в металлических проводниках. Влияние деформации на удельное сопротивление.
- •5. Электрофизические процессы в металлических проводниках. Влияние температуры на удельное сопротивление металлов.
- •6. Электрофизические процессы в металлических проводниках. Влияние размеров проводника на удельное сопротивление.
- •8. Электрофизические процессы в металлических проводниках. Эмиссионные и контактные явления в металлах.
- •9.Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Тепловое расширение.
- •10. Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Теплопроводность.
- •11.Электрофизические процессы в металлических проводниках. Тепловые свойства металлов. Теплоемкость.
- •12. Проводниковые материалы. Медь. Влияние примесей на физические свойства меди.
- •13.Проводниковые материалы. Медь. «Водородная болезнь» меди.
- •14.Проводниковые материалы. Медь. Коррозионная стойкость меди.
- •15. Проводниковые материалы. Медь. Сравнительные характеристики меди марок мт и мм
- •16. Бронзы. Состав, свойства, область применения в электротехнике.
- •17. Латуни. Состав, свойства, область применения в электротехнике.
- •18. Проводниковые материалы. Алюминий. Сравнительная характеристика алюминиевых и медных проводников. Гальваническая коррозия контакта Al и Cu.
- •19. Проводниковые материалы. Алюминий. Свойства твердой и мягкой алюминиевой проволоки.
- •21. Биметаллические проводники. Назначение, свойства.
- •22. Сверхпроводники. Влияние внешних факторов на сверхпроводимость.
- •23. Сверхпроводники 1-го и 2-го рода. Свойства, диаграммы состояния.
- •24. Сверхпроводники 3-го рода и высокотемпературные сверхпроводники. Перспективы применения в электроэнергетике.
- •25. Материалы высокого сопротивления. Манганин. Состав, свойства, применение.
- •26. Материалы высокого сопротивления. Константан. Состав, свойства, применение.
- •27. Материалы высокого сопротивления. Нагревостойкие сплавы. Состав, свойства, применение.
- •28. Основы технологии пайки металлов. Классификация припоев. Условные обозначения, свойства и назначение мягких припоев.
- •29. Основы технологии пайки металлов. Флюсы и припои для низкотемпературной пайки.
- •30. Основы технологии пайки металлов. Флюсы и припои для высокотемпературной пайки.
- •31. Общие сведения и классификация полупроводниковых металлов.
- •32. Общие сведения о собственных и примесных полупроводниках. Электропроводность собственных полупроводников.
- •33. Общие сведения о собственных и примесных полупроводниках. Электропроводность примесных полупроводников.
- •34. Виды примеси полупроводникового материала. Акцепторная примесь
- •35. Виды примеси полупроводникового материала. Донорная примесь.
- •37. Зависимость удельной электропроводности полупроводников от температуры
- •38. Диэлектрические материалы. Поляризация диэлектриков.
- •39. Диэлектрические материалы. Удельное сопротивление диэлектриков.
- •40. Диэлектрические материалы. Диэлектрические потери. Тангенс угла диэлектрических потерь.
- •41. Диэлектрические материалы. Электрическая прочность диэлекриков. Виды пробоя диэлектриков.
- •42. Нагревостойкость, классы нагревстойкости. Холодостойкость диэлектриков.
- •43. Светостойкость и тропикостойкость диэлектриков.
- •44. Классификация материалов по поведению в магнитном поле.
- •45. Основные характеристики магнитных материалов. Магнитодвижущая сила, магнитное сопротивление, напряженность магнитного поля, магнитная индукция
- •46. Магнитные материалы. Основная кривая намагничивания
- •47. Магнитные материалы. Процессы при намагничивании ферромагнетиков (петля гистерезиса).
- •48. Магнитные материалы. Поведение ферромагнетиков в переменных магнитных полях (магнитные потери).
- •49. Магнитные материалы. Области применения. Свойства.
25. Материалы высокого сопротивления. Манганин. Состав, свойства, применение.
Манганин — термостабильный сплав на основе меди (около 85 %) с добавкой марганца (Mn) (11,5—13,5 %) и никеля (Ni) (2,5—3,5 %). Характеризуется чрезвычайно малым изменением электрического сопротивления в области комнатных температур.
Примерный состав манганина: 84% меди, 12% марганца и 4% никеля.
Физические свойства
Плотность: 8,4 *10³ кг/м³
Температура плавления: 960 °C
Удельное электрическое сопротивление: 0,43-0,48×10−6 Ом·м.
Применение
Манганин — основной материал для электроизмерительных приборов и образцовых сопротивлений — эталонов магазинов, мостовых схем, шунтов, дополнительных сопротивлений приборов высокого класса точности. Максимальная рабочая температура — 300 °C.
Существенное преимущество манганина перед константаном заключается в том, что манганин обладает очень малой термоЭДС в паре с медью (не более 1 мкв/1 °C), поэтому в приборах высокого класса точности применяют только манганин. В то же время манганин, в отличие от константана, неустойчив против коррозии в атмосфере, содержащей пары кислот, аммиака, а также чувствителен к значительному изменению влажности воздуха.
26. Материалы высокого сопротивления. Константан. Состав, свойства, применение.
Константан (от лат. constans, родительный падеж лат. constantis — постоянный, неизменный) — термостабильный сплав на основе меди (Cu) (около 59%) с добавкой никеля (Ni) (39—41%) и марганца (Mn) (1—2%).
Сплав имеет высокое удельное электрическое сопротивление (около 0,5 мкОм·м), минимальное значение термического коэффициента электрического сопротивления, высокую термоэлектродвижущую силу в паре с медью, железом, хромелем. Температурный коэффициент линейного расширения 14,4×10−6 °C−1. Плотность 8800—8900 кг/м3, температура плавления около 1260 °C. Хорошо поддаётся обработке. Идёт на изготовление термопар, активного элемента тензодатчика, реостатов и электронагревательных элементов с рабочей температурой до 400—500 °C, измерительных приборов высокого класса точности.
Физические свойства
Плотность: 8800—8900 кг/м3
но обусловливает применение его в термопарах. Изолированная константановая проволока в паре с медной применяется для термопар.
Из константана изготовляют мягкие и твердые изделия — проволоку 0 0,03—5 мм и ленту толщиной до 0,1 мм. Константановые изделия могут использоваться при температурах, не превышающих 450°С.
К сплавам с большим удельным электрическим сопротивлением относится резистивный сплав МЛТ. В его состав входит 43,6% (по массе) кремния, 17,6% хрома, 14,1% железа и 24,7% вольфрама. Электрические характеристики сплава: r = 0,05 Ом • мм2/м, ТКr = 5 * 10-5 1/° С. Сплав выпускается в виде порошка серого цвета. Главная область применения сплава — производство металлопленочных резисторов.