
- •Трибология
- •Физические основы,
- •Механика и технические
- •Приложения
- •Оглавление
- •Глава 1. Основные представления о контактировании и трении соприкасающихся поверхностей 10
- •Глава 2. Динамические процессы в узлах трения 37
- •Глава 4. Изнашивание 88
- •Глава 5. Триботехника 140
- •Введение
- •Глава 1 Основные представления о контактировании и трении соприкасающихся поверхностей
- •1.Анализ контактирования и оценка площади соприкосновения
- •2.Трение скольжения
- •3.Влияние скорости скольжения и температуры на свойства контакта и фрикционные колебания
- •4.Трение качения
- •5.Гидродинамическое трение
- •Заключение
- •Библиографический список
- •Глава 2 динамические процессы в узлах трения
- •6.Общая характеристика динамических явлений в узлах трения
- •7.Узел трения как объект моделирования в динамике машин
- •8.Динамическая характеристика узлов трения Инерционные свойства узлов трения
- •Характеристика возбуждающих сил в узлах трения
- •Упругие свойства узлов трения
- •Диссипативные свойства узлов трения
- •Механизм рассеяния энергии при тангенциальных колебаниях
- •9.Общая схема оценки величины динамического нагружения в узлах трения
- •Заключение
- •Библиографический список
- •Глава 3 Строение, физико-химические свойства и особенности состояния поверхностного слоя трущихся деталей
- •10.Строение, структура и дефекты материалов пар трения
- •11.Физические свойства поверхностных слоев
- •12.Влияние механической обработки на служебные свойства поверхностного слоя. Характеристики шероховатости поверхностей
- •13.Краткая характеристика некоторых вопросов теории строения, природы свойств и состояния материала поверхностных слоев
- •14.Обзор известных способов оценки активационных параметров разрушения материалов
- •15.Р азработка и теоретическое обоснование нового способа оценки активационных параметров материалов при склерометрировании
- •16.Применение склерометрии для оценки энергии активации термомеханической деструкции смазочных материалов
- •Заключение
- •Библиографический список
- •17.Характеристика карбонофторидов
- •5.3.5. Требования к смазочным системам транспортных машин
- •18.5.4. Методы обеспечения высоких эксплуатационных свойств узлов трения
- •5.4.1. Специфика конструирования узлов трения
- •5.4.2. Основы расчетов при проектировании подшипников скольжения
- •5.4.3. Инженерные расчеты при использовании подшипников качения Классификация подшипников качения
- •Расчет подшипников качения при статическом нагружении
- •Нагрузки на тела качения
- •Оценка предельной быстроходности подшипников качения
- •Расчет потерь на трение в подшипниках качения
- •Гидродинамический режим смазки подшипника качения
- •5.4.4. Основные принципы конструирования подшипниковых узлов
- •5.4.5. Новое направление в обеспечении надежности и высокого ресурса опор роторных систем - магнитный подвес
- •5.4.6. Оценка долговечности узлов трения методами теории вероятности
- •19.5.5. Технологические методы обеспечения высокой износостойкости узлов трения
- •Химико-термическая обработка (хто)
- •Поверхностная закалка
- •Электрохимические покрытия
- •Химическая обработка
- •Механотермическое формирование износостойких покрытий
- •Наплавка износостойких слоев
- •Напыление покрытий из порошковых материалов
- •Ионно-плазменные методы
- •Плакирование
- •Механическое упрочнение поверхностей
- •Характеристика электролитического осталивания
- •Основные элементы ресурсоповышающих мероприятий:
- •20.5.6. Обеспечение надежности узлов трения транспортных машин в эксплуатации Система обеспечения надежности
- •Силовые платформенные стенды
- •Методы и средства диагностирования рулевого управления и элементов передней подвески.
- •21.5.7. Новая техника для промывки деталей узлов трения
- •23.Библиографический список.
- •Глава 5 триботехника
- •24.5.1. Характерные узлы трения транспортных машин
- •5.1.1. Основные узлы трения и изнашивание в двигателях внутреннего сгорания
- •5.1.2. Агрегаты шасси, трансмиссии и рулевого управления
- •5.1.3. Шины и проблемы движения колесных машин
- •25.5.2. Конструкционные материалы узлов трения
- •5.2.1. Металлические антифрикционные материалы
- •5.2.2. Антифрикционные материалы, получаемые из порошков и пластмасс
- •5.2.3. Фрикционные материалы
- •5.2.4. Полимерные материалы
- •Материалы на основе полиимидов
- •Материалы на основе поликарбоната
- •Материалы на основе полиэтилена
- •Материалы на основе полиарилатов
- •Материалы на основе эпоксидных смол
- •Материалы на основе фенолформальдегидных полимеров (ффп)
- •26.5.3. Смазывание и смазочные материалы
- •5.3.1. Назначение смазочных материалов
- •5.3.2. Смазочные масла, их физико-механические свойства и методики оценки характеристик
- •5.3.3. Состав масел и механизм смазочного действия. Роль функциональных присадок к смазочным маслам
- •28.Усталостное изнашивание
- •29.Абразивное изнашивание
- •30.Коррозионно-механическое изнашивание
- •31.Водородное изнашивание
- •32.4.2. Кинетическая интерпретация изнашивания
- •33.4.3. Термодинамическая интерпретация изнашивания
- •34.4.4. Физические методы изучения состояния поверхностных слоев
- •35.Фрактография износа
- •36.4.5. Применение рентгеновских методов исследования в трибологии
- •4.5.1. Пример исследования изнашивания шарниров шасси самолетов
- •4.5.2. Пример исследования изнашивания чугунных поверхностей
- •4.5.3. Пример комплексного исследования изнашивания при фреттинг-коррозии титановых сплавов
- •37.4.6. Общие сведения о проблеме моделирования изнашивания
- •4.6.2. Феноменологический подход
- •4.6.3. Концептуальный подход
- •4.6.4. Металлофизический подход
- •4.6.5. Термодинамический подход
- •4.6.6. Кинетический подход
- •4.6.7. Синергетический подход
- •4.6.8. Системе понятий использованных при разработке новой кинетической модели изнашивания
- •4.6.9. Процесс разработки и характеристика кинетической модели изнашивания
- •38.Заключение
- •39.Библиографический список
21.5.7. Новая техника для промывки деталей узлов трения
В сборочном и ремонтном производстве одним из условий обеспечения качества и ресурса собираемых узлов трения является обязательная промывка деталей.
Удалению подлежат не только промышленная грязь (жиры, пыль, нагар и т.д.), но и твердые частицы, которые шаржируются в поверхности трения подшипников и других деталей при их обработке абразивным инструментом. Такие частицы при трении образуют царапины и вмятины на контактирующих поверхностях, а после отделения попадают в масло и вызывают абразивное изнашивание.
Известен единственный эффективный метод, позволяющий обеспечить качественную промывку, - применение акустического возбуждения моющей среды. Для этого обычно используется ультразвук. Под действием ультразвука в жидкости возникает кавитация , а кавитационные пузырьки, "взрываясь" у поверхности деталей, создают ударные волны и производят очистку поверхностей.
Проблема состоит в дороговизне мощных ультразвуковых установок, их сложности и вредности ультразвукового воздействия на оператора, кроме того ультразвук затухает в отверстиях, и удаленные полости остаются непромытыми. Поэтому в истории акустических технологий предпринимались многочисленные попытки возбудить кавитацию в моющих установках без ультразвука. Однако, несмотря на полученные эффекты, акустические технологии до сих пор не нашли широкого применения. Основной причиной этого являлось отсутствие эффективных промышленных приводных механизмов возбуждения жидкостей с заданными частотами, силовыми и амплитудными характеристиками. Создать такой частотный мультипликатор, отвечающий требованиям акустических технологий, позволяющий создавать промышленные установки различного назначения, удалось в Самарском техническом университете (разработчики Д.Г. Громаковский, В.П. Малышев, А.Г. Ковшов и др.). Схема мультипликатора приведена на рис. 5.71.
В качестве первых промышленных образцов гидроволновых установок (ГВУ) для акустических технологий создано семейство установок "Кавитон", предназначенных для промывки деталей перед сборкой новых машин и при производстве
ремонтных работ. На этих машинах отработана промывка сетчатых пакетов фильтроэлементов маслосистемы, подшипников, топливной, гидравлической аппаратуры и др. ГВУ (см.рис. 5.71) содержит ванну цилиндрической формы 1 и диск-активатор 2. Ванну заполняют технической водой с температурой Т=20С. Очищаемые детали 3 размещают в рабочей зоне ванны 4, затем включают привод пульсации давления 5, который сообщает диску линейные возвратно-поступательные перемещения, и производят промывку. Эффективная промывка на ГВУ происходит в резонансном режиме рабочего процесса, при котором частота движений активатора 2 соответствует собственной частоте столба моющей жидкости. Настройку осуществляют путем плавного изменения частоты вращения приводного двигателя постоянного тока 6, вращающего многовершинный кулачок пульсационного привода. Зона резонанса в данных установках находится в интервале 120150Гц. Приведенными выше примерами научно-технических разработок, направленных на обеспечение высокой долговечности и надежности узлов трения транспортных машин, авторы заканчивают обзор проблемы изнашивания при трении. |
|
|
|
Р и с. 5.69. Схема гидроволновой установки "Кавитон" для промывки деталей |
|
|
|
22.