
- •Трибология
- •Физические основы,
- •Механика и технические
- •Приложения
- •Оглавление
- •Глава 1. Основные представления о контактировании и трении соприкасающихся поверхностей 10
- •Глава 2. Динамические процессы в узлах трения 37
- •Глава 4. Изнашивание 88
- •Глава 5. Триботехника 140
- •Введение
- •Глава 1 Основные представления о контактировании и трении соприкасающихся поверхностей
- •1.Анализ контактирования и оценка площади соприкосновения
- •2.Трение скольжения
- •3.Влияние скорости скольжения и температуры на свойства контакта и фрикционные колебания
- •4.Трение качения
- •5.Гидродинамическое трение
- •Заключение
- •Библиографический список
- •Глава 2 динамические процессы в узлах трения
- •6.Общая характеристика динамических явлений в узлах трения
- •7.Узел трения как объект моделирования в динамике машин
- •8.Динамическая характеристика узлов трения Инерционные свойства узлов трения
- •Характеристика возбуждающих сил в узлах трения
- •Упругие свойства узлов трения
- •Диссипативные свойства узлов трения
- •Механизм рассеяния энергии при тангенциальных колебаниях
- •9.Общая схема оценки величины динамического нагружения в узлах трения
- •Заключение
- •Библиографический список
- •Глава 3 Строение, физико-химические свойства и особенности состояния поверхностного слоя трущихся деталей
- •10.Строение, структура и дефекты материалов пар трения
- •11.Физические свойства поверхностных слоев
- •12.Влияние механической обработки на служебные свойства поверхностного слоя. Характеристики шероховатости поверхностей
- •13.Краткая характеристика некоторых вопросов теории строения, природы свойств и состояния материала поверхностных слоев
- •14.Обзор известных способов оценки активационных параметров разрушения материалов
- •15.Р азработка и теоретическое обоснование нового способа оценки активационных параметров материалов при склерометрировании
- •16.Применение склерометрии для оценки энергии активации термомеханической деструкции смазочных материалов
- •Заключение
- •Библиографический список
- •17.Характеристика карбонофторидов
- •5.3.5. Требования к смазочным системам транспортных машин
- •18.5.4. Методы обеспечения высоких эксплуатационных свойств узлов трения
- •5.4.1. Специфика конструирования узлов трения
- •5.4.2. Основы расчетов при проектировании подшипников скольжения
- •5.4.3. Инженерные расчеты при использовании подшипников качения Классификация подшипников качения
- •Расчет подшипников качения при статическом нагружении
- •Нагрузки на тела качения
- •Оценка предельной быстроходности подшипников качения
- •Расчет потерь на трение в подшипниках качения
- •Гидродинамический режим смазки подшипника качения
- •5.4.4. Основные принципы конструирования подшипниковых узлов
- •5.4.5. Новое направление в обеспечении надежности и высокого ресурса опор роторных систем - магнитный подвес
- •5.4.6. Оценка долговечности узлов трения методами теории вероятности
- •19.5.5. Технологические методы обеспечения высокой износостойкости узлов трения
- •Химико-термическая обработка (хто)
- •Поверхностная закалка
- •Электрохимические покрытия
- •Химическая обработка
- •Механотермическое формирование износостойких покрытий
- •Наплавка износостойких слоев
- •Напыление покрытий из порошковых материалов
- •Ионно-плазменные методы
- •Плакирование
- •Механическое упрочнение поверхностей
- •Характеристика электролитического осталивания
- •Основные элементы ресурсоповышающих мероприятий:
- •20.5.6. Обеспечение надежности узлов трения транспортных машин в эксплуатации Система обеспечения надежности
- •Силовые платформенные стенды
- •Методы и средства диагностирования рулевого управления и элементов передней подвески.
- •21.5.7. Новая техника для промывки деталей узлов трения
- •23.Библиографический список.
- •Глава 5 триботехника
- •24.5.1. Характерные узлы трения транспортных машин
- •5.1.1. Основные узлы трения и изнашивание в двигателях внутреннего сгорания
- •5.1.2. Агрегаты шасси, трансмиссии и рулевого управления
- •5.1.3. Шины и проблемы движения колесных машин
- •25.5.2. Конструкционные материалы узлов трения
- •5.2.1. Металлические антифрикционные материалы
- •5.2.2. Антифрикционные материалы, получаемые из порошков и пластмасс
- •5.2.3. Фрикционные материалы
- •5.2.4. Полимерные материалы
- •Материалы на основе полиимидов
- •Материалы на основе поликарбоната
- •Материалы на основе полиэтилена
- •Материалы на основе полиарилатов
- •Материалы на основе эпоксидных смол
- •Материалы на основе фенолформальдегидных полимеров (ффп)
- •26.5.3. Смазывание и смазочные материалы
- •5.3.1. Назначение смазочных материалов
- •5.3.2. Смазочные масла, их физико-механические свойства и методики оценки характеристик
- •5.3.3. Состав масел и механизм смазочного действия. Роль функциональных присадок к смазочным маслам
- •28.Усталостное изнашивание
- •29.Абразивное изнашивание
- •30.Коррозионно-механическое изнашивание
- •31.Водородное изнашивание
- •32.4.2. Кинетическая интерпретация изнашивания
- •33.4.3. Термодинамическая интерпретация изнашивания
- •34.4.4. Физические методы изучения состояния поверхностных слоев
- •35.Фрактография износа
- •36.4.5. Применение рентгеновских методов исследования в трибологии
- •4.5.1. Пример исследования изнашивания шарниров шасси самолетов
- •4.5.2. Пример исследования изнашивания чугунных поверхностей
- •4.5.3. Пример комплексного исследования изнашивания при фреттинг-коррозии титановых сплавов
- •37.4.6. Общие сведения о проблеме моделирования изнашивания
- •4.6.2. Феноменологический подход
- •4.6.3. Концептуальный подход
- •4.6.4. Металлофизический подход
- •4.6.5. Термодинамический подход
- •4.6.6. Кинетический подход
- •4.6.7. Синергетический подход
- •4.6.8. Системе понятий использованных при разработке новой кинетической модели изнашивания
- •4.6.9. Процесс разработки и характеристика кинетической модели изнашивания
- •38.Заключение
- •39.Библиографический список
Механотермическое формирование износостойких покрытий
Метод заключается в том, что защитный слой кристаллизуется из расплава в стесненных условиях под нагрузкой. При этом в нем отсутствуют полости и сквозные поры, основной металл практически не подплавляется и не попадает в наплавляемый слой, который надежно соединяется с основой. Используют две технологических схемы: фрикционное и электроконтактное формование.
Первая технологическая схема включает в себя прижатие с определенным усилием к поверхности детали сухарей из материала будущего покрытия. Возможен и другой вариант: с помощью пуансона прижимается брикет из гранул или стружки. Затем покрываемая поверхность с заданной скоростью приводится в циклическое движение. Наносимый материал трется о поверхность детали, на границе выделяется теплота. В какой-то момент времени температура контакта достигает точки плавления. Плавление, а следовательно формирование износостойкого слоя, происходит под давлением от 5 до 100 МПа при скорости скольжения 18м/с. При этом время формирования слоя составляет 570 с. Этим способом создается покрытие толщиной от 0,5 до 10 мм. На стальную основу наносятся слои из медных, алюминиевых и других сплавов. Метод имеет ряд ограничений. Он применим для деталей цилиндрической формы, приводимых во вращение. Температура плавления материала покрытия должна быть меньше, чем у материала основы. Этот метод успешно применяется для создания медного покрытия на поверхностях гильз цилиндров ДВС, что стимулирует возникновение режима избирательного переноса. При испытаниях пара цилиндр - поршень практически не изнашивается.
При электроконтактном формировании тепло выделяется в результате прохождения электрического тока через обладающий большим сопротивлением гранулированный материал, прижимаемый с заданным давлением к поверхности детали. Здесь форма поверхности детали может быть любой. Температурные ограничения тоже отсутствуют. Этим методом на сталь наносится широкий спектр материалов: легированные стали, твердые сплавы, износостойкие композиции. Таким же образом осуществляется электроконтактная наплавка, основанная на принципе контактной сварки. Наплавляемый материал (обычно в виде ленты) прижимается к поверхности детали электродом. Между электродом и деталью прикладывается разность потенциалов от 2 до 12 В. Можно использовать в качестве источника тока сварочный трансформатор. Если наплавляют длинномерные детали, то электрод делают в виде ролика, катящегося по детали и осуществляющего приварку защитного покрытия.
Наплавка износостойких слоев
Это один из наиболее распространенных способов восстановления изношенных деталей автотранспортных средств. Имеется большое число методов наплавки, которые различаются источниками тепловой энергии, способами защиты наплавляемого металла, уровнем автоматизации. Однако все виды наплавки имеют общие металлургические и физико-химические основы. К ним относится расплавление наносимого металла с частичным расплавлением поверхностного слоя, перемешивание расплавов, кристаллизация.
Наибольшее распространение получила электродуговая наплавка, осуществляемая ручным и полуавтоматизированным способами. При механизированной наплавке вместо отдельных электродов применяется свернутая в бухту проволока либо электродная лента. Чаще всего применяется наплавка под слоем флюса. Порошковый флюс, непрерывно подаваемый в зону дуги образует над швом шлаковую оболочку, которая из-за низкой теплопроводности уменьшает скорость охлаждения наплавленного материала, что способствует нормализации структуры, а также защищает шов от окисления, предотвращает разбрызгивание металла, доля которого во шве колеблется от 30 до 65%, что ухудшает свойства защитного слоя и делает их в значительной мере случайными величинами. Наплавка под флюсом успешно применяется при восстановлении клапанов автомобильных двигателей, осей шарниров и других сильноизнашиваемых деталей. Качество покрытия заметно улучшается, когда исключается контакт наплавляемого материала с кислородом воздуха. Для этого процесс проводят в среде углекислого газа, аргона и их смесей. Интересен высокоэффективный метод наплавки порошковой проволокой, представляющей собой тонкую трубку из стали с запрессованной в ней порошковой смесью, обеспечивающей получение требуемого состава наплавляемого слоя.
Применение плазменно-дугового вместо обычного электродугового разряда позволило существенно снизить вредное влияние подплавления основного материала. Здесь возможны разные варианты подачи наплавляемого материала в зону наплавки: подача проволоки, проплавление заранее уложенной проволоки (так наплавляют клапана ДВС), вдувание наплавляемого порошка вместе с потоком плазмы. Последний метод предпочтителен, поскольку позволяет полностью автоматизировать процесс.