
- •Трибология
- •Физические основы,
- •Механика и технические
- •Приложения
- •Оглавление
- •Глава 1. Основные представления о контактировании и трении соприкасающихся поверхностей 10
- •Глава 2. Динамические процессы в узлах трения 37
- •Глава 4. Изнашивание 88
- •Глава 5. Триботехника 140
- •Введение
- •Глава 1 Основные представления о контактировании и трении соприкасающихся поверхностей
- •1.Анализ контактирования и оценка площади соприкосновения
- •2.Трение скольжения
- •3.Влияние скорости скольжения и температуры на свойства контакта и фрикционные колебания
- •4.Трение качения
- •5.Гидродинамическое трение
- •Заключение
- •Библиографический список
- •Глава 2 динамические процессы в узлах трения
- •6.Общая характеристика динамических явлений в узлах трения
- •7.Узел трения как объект моделирования в динамике машин
- •8.Динамическая характеристика узлов трения Инерционные свойства узлов трения
- •Характеристика возбуждающих сил в узлах трения
- •Упругие свойства узлов трения
- •Диссипативные свойства узлов трения
- •Механизм рассеяния энергии при тангенциальных колебаниях
- •9.Общая схема оценки величины динамического нагружения в узлах трения
- •Заключение
- •Библиографический список
- •Глава 3 Строение, физико-химические свойства и особенности состояния поверхностного слоя трущихся деталей
- •10.Строение, структура и дефекты материалов пар трения
- •11.Физические свойства поверхностных слоев
- •12.Влияние механической обработки на служебные свойства поверхностного слоя. Характеристики шероховатости поверхностей
- •13.Краткая характеристика некоторых вопросов теории строения, природы свойств и состояния материала поверхностных слоев
- •14.Обзор известных способов оценки активационных параметров разрушения материалов
- •15.Р азработка и теоретическое обоснование нового способа оценки активационных параметров материалов при склерометрировании
- •16.Применение склерометрии для оценки энергии активации термомеханической деструкции смазочных материалов
- •Заключение
- •Библиографический список
- •17.Характеристика карбонофторидов
- •5.3.5. Требования к смазочным системам транспортных машин
- •18.5.4. Методы обеспечения высоких эксплуатационных свойств узлов трения
- •5.4.1. Специфика конструирования узлов трения
- •5.4.2. Основы расчетов при проектировании подшипников скольжения
- •5.4.3. Инженерные расчеты при использовании подшипников качения Классификация подшипников качения
- •Расчет подшипников качения при статическом нагружении
- •Нагрузки на тела качения
- •Оценка предельной быстроходности подшипников качения
- •Расчет потерь на трение в подшипниках качения
- •Гидродинамический режим смазки подшипника качения
- •5.4.4. Основные принципы конструирования подшипниковых узлов
- •5.4.5. Новое направление в обеспечении надежности и высокого ресурса опор роторных систем - магнитный подвес
- •5.4.6. Оценка долговечности узлов трения методами теории вероятности
- •19.5.5. Технологические методы обеспечения высокой износостойкости узлов трения
- •Химико-термическая обработка (хто)
- •Поверхностная закалка
- •Электрохимические покрытия
- •Химическая обработка
- •Механотермическое формирование износостойких покрытий
- •Наплавка износостойких слоев
- •Напыление покрытий из порошковых материалов
- •Ионно-плазменные методы
- •Плакирование
- •Механическое упрочнение поверхностей
- •Характеристика электролитического осталивания
- •Основные элементы ресурсоповышающих мероприятий:
- •20.5.6. Обеспечение надежности узлов трения транспортных машин в эксплуатации Система обеспечения надежности
- •Силовые платформенные стенды
- •Методы и средства диагностирования рулевого управления и элементов передней подвески.
- •21.5.7. Новая техника для промывки деталей узлов трения
- •23.Библиографический список.
- •Глава 5 триботехника
- •24.5.1. Характерные узлы трения транспортных машин
- •5.1.1. Основные узлы трения и изнашивание в двигателях внутреннего сгорания
- •5.1.2. Агрегаты шасси, трансмиссии и рулевого управления
- •5.1.3. Шины и проблемы движения колесных машин
- •25.5.2. Конструкционные материалы узлов трения
- •5.2.1. Металлические антифрикционные материалы
- •5.2.2. Антифрикционные материалы, получаемые из порошков и пластмасс
- •5.2.3. Фрикционные материалы
- •5.2.4. Полимерные материалы
- •Материалы на основе полиимидов
- •Материалы на основе поликарбоната
- •Материалы на основе полиэтилена
- •Материалы на основе полиарилатов
- •Материалы на основе эпоксидных смол
- •Материалы на основе фенолформальдегидных полимеров (ффп)
- •26.5.3. Смазывание и смазочные материалы
- •5.3.1. Назначение смазочных материалов
- •5.3.2. Смазочные масла, их физико-механические свойства и методики оценки характеристик
- •5.3.3. Состав масел и механизм смазочного действия. Роль функциональных присадок к смазочным маслам
- •28.Усталостное изнашивание
- •29.Абразивное изнашивание
- •30.Коррозионно-механическое изнашивание
- •31.Водородное изнашивание
- •32.4.2. Кинетическая интерпретация изнашивания
- •33.4.3. Термодинамическая интерпретация изнашивания
- •34.4.4. Физические методы изучения состояния поверхностных слоев
- •35.Фрактография износа
- •36.4.5. Применение рентгеновских методов исследования в трибологии
- •4.5.1. Пример исследования изнашивания шарниров шасси самолетов
- •4.5.2. Пример исследования изнашивания чугунных поверхностей
- •4.5.3. Пример комплексного исследования изнашивания при фреттинг-коррозии титановых сплавов
- •37.4.6. Общие сведения о проблеме моделирования изнашивания
- •4.6.2. Феноменологический подход
- •4.6.3. Концептуальный подход
- •4.6.4. Металлофизический подход
- •4.6.5. Термодинамический подход
- •4.6.6. Кинетический подход
- •4.6.7. Синергетический подход
- •4.6.8. Системе понятий использованных при разработке новой кинетической модели изнашивания
- •4.6.9. Процесс разработки и характеристика кинетической модели изнашивания
- •38.Заключение
- •39.Библиографический список
Диссипативные свойства узлов трения
При описании диссипативных свойств любой динамической системы применяют термины демпфирование, неупругое сопротивление, и др.
Отметим, что это термины-синонимы, применяемые в механике для описания одного явления - затухания колебаний вследствие необратимого рассеяния энергии динамической системой машин или механизмов.
Обсудим эту характеристику путем общепринятого подхода в теории колебаний.
Представим, как и ранее, узел трения в виде одномассовой модели, рис. 2.7.
а б в
Р и с. 2.7. Иллюстрация методики оценки логарифмического декремента колебаний :
а - схема механизма; б - модель механизма;
в - виброграмма затухающих колебаний в стыке
В рассматриваемой одномассовой системе затухающие колебания ползуна, вызванные единичным импульсом Рх , описывают уравнением свободных колебаний
.
(2.5)
Колебания в этой системе начинаются после выведения ее из положения равновесия путем задания начальных условий.
Известно, что общее решение подобных уравнений имеет вид:
,
(2.6)
где А0 -
начальная амплитуда свободных колебаний;
- начальная фаза;
А(t) = A0e-nТ
- экспоненциальная функция, характеризующая
убывание амплитуды с течением времени;
Т =
- период колебаний,
- круговая частота; n = c/2m -
коэффициент затухания.
Диссипативный коэффициент С для уравнения (2.5) определяют по экспериментальным виброграммам затухания с помощью логарифмического декремента колебаний - , (см. рис. 2.7,в):
,
(2.7)
где At и At+1 - по рис. 2.7,в амплитуды затухающих колебаний в момент времени, отличающийся на период колебания.
Эта характеристика вводится в дифференциальное уравнение (2.5) следующим образом.
При решении все коэффициенты уравнения (2.5) (m, c и k) делят на m. В результате уравнение (2.5) получает вид
(2.8)
где
;
;
О - собственная
частота системы.
Учитывая, что частота колебаний f=1/T получаем выражение коэффициента демпфирования:
.
(2.9)
Такова структура коэффициента демпфирования в линейной системе, характеризующего диссипацию энергии колебаний.
В реальных узлах трения явление рассеяния усложняется - проявляются нелинейная зависимость логарифмического декремента колебаний от их скорости = f( ) и другие сложные зависимости от температуры, давления, свойств и состояния материала деталей и смазки.
Зависимость характеристики диссипации энергии от скорости определяют по методике, подобной упомянутой выше: снимая получают виброграмму затухающих колебаний (см. рис. 2.7,в), а затем дифференцированием - виброграмму скорости колебаний. По виброграмме находят логарифм отношения амплитуды виброскорости соседних периодов колебаний:
(2.10)
Такая оценка характеристики диссипативности системы более точна по физическому смыслу явления, заключающегося в том, что рассеяние в системе пропорционально скорости затухающих колебаний.
Наибольшее влияние на суммарную диссипативность любого стыка оказывают свойства смазочного слоя и контактное давление. Несмотря на малую толщину, присутствие смазочного слоя увеличивает значение декремента колебаний по сравнению с «сухим стыком» в 2-3 раза. Также существенное отличие имеет демпфирующая способность смазочного слоя в зависимости от его собственной структуры и свойств смазочного материала.
Иллюстрация масштабности воздействия этих факторов приведена на рис. 2.8.
Высокая демпфирующая способность слоя смазки под номером 2 не является случайной.
В результате исследований было установлено, что существуют органические, минеральные и синтетические структуры, обладающие известным в физике свойством поворотной изомерии.
При пульсации давления (в динамически нагруженном стыке) за каждый период упругих колебаний происходит необратимый процесс перехода молекул из одного поворотно-изомерного состояния в другое, вследствие чего происходит интенсивная диссипация энергии. Внутреннее трение такого рода называют объемной вязкостью.
Если в обычные смазочные жидкости добавить вещества с указанным свойством, то наблюдается высокий эффект диссипации энергии смазочным слоем (см. рис. 2.8, кривая 2).
а б
Р и с. 2.8. Результаты исследования зависимости
логарифмического декремента колебания:
а - от величины номинального давления в стыке; б - от частоты возмущающей силы
1 - ИНСП - 110; 2 - опытное масло; 3 - Топпа-72; 4 - Vactra; 5 - несмазанный стык
К числу веществ, вызывающих повышение диссипативности смазки, относятся циклогексанол, моно, ди- и триметил замещенные производные циклогексана, ацетат, алкил (С1 - С2)- лактат, ферроцены и др.