
- •Ассемблер
- •Фортран
- •Пролог и Пролог
- •Теория искусственного интеллекта
- •Тест Тьюринга
- •2. Классификация эвм по этапам создания.
- •3. Классификация эвм по назначению
- •4 . Классификация эвм по размерам и функциональным возможностям
- •СуперЭвм
- •4.2.Большие эвм
- •.МикроЭвм
- •4.4.1.Универсальные
- •4.4.2.Специализированные
- •4.4.2.1.Серверы
- •1 Принцип модульности
- •2 Принцип функциональной избирательности
- •3 Принцип генерируемости ос
- •4 Принцип функциональной избыточности
- •5 Принцип виртуализации
- •6 Принцип независимости программ от внешних устройств
- •7 Принцип совместимости
- •8 Принцип открытой и наращиваемой ос
- •9 Принцип мобильности (переносимости)
- •10 Принцип обеспечения безопасности вычислений
- •Тема 5. Память в реальном режиме
- •Тема 6. Память в защищенном режиме
- •Тема 7. Аппаратные irq
- •Тема 8 Видеопамять, видеокарты, мониторы
- •4)Основные характеристики мониторов
- •5)Виды мониторов
- •8)Перспективные конструкции и технологии мониторов Технология e-Ink
- •Технология Electro Wetting
- •Технология микродисплеев
- •Электромеханические панели
- •Тема 9 Модемы
- •1. Типовая система передачи данных
- •2) Каналы связи
- •1. 2. 1. Аналоговые и цифровые каналы
- •1. 2. 2. Коммутируемые и выделенные каналы
- •1. 2. 3. Двух- и четырехпроводные каналы
- •3) 3. Семиуровневая модель osi
- •1. 3. 1. Физический уровень
- •1. 3. 2. Канальный уровень
- •4) Факсимильная связь
- •1. 4. 1. Передача факсимильного изображения
- •1. 4. 2. Стандарты факсимильной связи
- •5) Классификация модемов
- •1. 6. 1. По области применения
- •1. 6. 2. По методу передачи
- •1. 6. 3. По интеллектуальным возможностям
- •1. 6. 4. По конструкции
- •1. 6. 5. По поддержке международных и фирменных протоколов
- •6)Устройство современных модемов
- •2. 1. Общие сведения
- •2. 2. Состав модема для ктсоп
- •2. 3. Скремблирование
- •2. 5. Устройство цифрового модема
- •2. 6. Линейное кодирование
- •1) Аналоговая модуляция
- •2) Дискретная модуляция аналоговых сигналов
- •8.2. Методы Шеннона-фано и Хаффмена
- •8.3. Алгоритм lzw
- •8.4. Сжатие данных в протоколах mnp
- •8.4.1. Протокол mnp5
- •8.4.2. Протокол mnp7
- •8.5. Сжатие данных по стандарту V.42bis
- •9.1 Протокол xModem
- •9.2. Протокол xModem-crc
- •9.3. Протокол xModem-ik
- •9.4. Протокол yModem
- •9.5. Протокол yModem-g
- •9.6. Протокол zModem
- •9.6.1. Требования протокола zModem
- •9.6.2. Формат кадров протокола zModem
- •9.6.3. Типы кадров zModem
- •9.6.4. Информация о файле в кадре zfile
- •9.6.5. Работа протокола zModem
- •Тема 10. Назначение чипсетов
- •Тема 11. Современные процессоры. Их архитектура
- •Характерные особенности risc-процессоров
- •3) Классы процессоров
- •4) Структура базового микропроцессора
- •Характеристики микропроцессоров фирмы Intel
- •Тема 12. Современные виды памяти. Их характеристики
- •1) Классификация ram(Random Access Memory):
- •2) Разновидности ram:
- •3)Виды ram и их характеристики:
- •Fpm ram (Быстрая страничная память)
- •Edo ram (память с усовершенствованным выходом)
- •Bedo dram (Пакетная edo ram)
- •Sdr sdram — синхронная dram
- •4)Новые перспективные виды памяти будущих компьютеров
- •Тема 13. Объединение компьютеров между собой
- •Естественные среды
- •Искусственные среды
- •Тема 14. Интернет
- •[Править]Каталоги
- •Тема 15. Жесткие диски и типы файловых систем
- •Название «Винчестер»
- •[Править]Характеристики
- •[Править]Уровень шума
- •[Править]Производители
- •[Править]Устройство
- •[Править]Гермозона
- •[Править]Устройство позиционирования
- •[Править]Блок электроники
- •[Править]Низкоуровневое форматирование
- •[Править]Геометрия магнитного диска
- •[Править]Особенности геометрии жёстких дисков со встроенными контроллерами [править]Зонирование
- •[Править]Резервные секторы
- •[Править]Логическая геометрия
- •[Править]Адресация данных
- •[Править]chs
- •[Править]lba
- •[Править]Технологии записи данных
- •[Править]Метод продольной записи
- •[Править]Метод перпендикулярной записи
- •[Править]Метод тепловой магнитной записи
- •[Править]Структурированные носители данных
- •[Править]Сравнение интерфейсов
- •[Править]raid 1
- •[Править]raid 2
- •[Править]raid 3
- •[Править]raid 4
- •[Править]raid 5
- •[Править]raid 5ee
- •[Править]raid 6
- •[Править]raid 7
- •[Править]raid 10
- •[Править]Комбинированные уровни
- •[Править]Сравнение стандартных уровней
- •[Править]Matrix raid
- •[Править]Программный (англ. Software) raid
- •[Править]Дальнейшее развитие идеи raid
- •Иерархия каталогов в Microsoft Windows
- •Классификация файловых систем
- •[Править]Задачи файловой системы
[Править]Устройство позиционирования
Разобранный жесткий диск. Снята верхняя пластина статора соленоидногодвигателя
Устройство позиционирования (сервопривод, жарг. актуатор) головок представляет из себямалоинерционный[источник не указан 87 дней] соленоидный двигатель.[13] Оно состоит из неподвижной пары сильных неодимовыхпостоянных магнитов, а также катушки (соленоид) на подвижном кронштейне блока головок.
Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет ее точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.[13]
В каждом накопителе существует специальная зона, называемая парковочной, именно на ней останавливаются головки в те моменты, когда накопитель выключен, либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) основном источником шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путем, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология — Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6, хотя некоторые производители делали экспериментальные реализации и в более младших версиях этого стандарта. Согласно стандарту, управление осуществляется путем изменения значения управляющей переменной в диапазоне от 128 до 254, что позволяет регулировать шум, производительность, температуру, потребление электроэнергии и срок эксплуатации жёсткого диска.
[Править]Блок электроники
В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.
Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.
Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).
Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.
Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.
Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.
Макрофото магнитной головки
Запаркованная магнитная головка
Современные контроллеры позволяют создавать сложные конфигурации дисковых массивов
Плата контроллера на 3,5" 73-гигабайтномSerial Attached SCSI-диске Fujitsu
Механическая и электрическая составляющие привода магнитных головок
Последствие касания магнитной головкой поверхности диска
Для подключения к материнской плате диска MFM требуется контроллер
Плата контроллера на старом IDE-диске