
- •Ассемблер
- •Фортран
- •Пролог и Пролог
- •Теория искусственного интеллекта
- •Тест Тьюринга
- •2. Классификация эвм по этапам создания.
- •3. Классификация эвм по назначению
- •4 . Классификация эвм по размерам и функциональным возможностям
- •СуперЭвм
- •4.2.Большие эвм
- •.МикроЭвм
- •4.4.1.Универсальные
- •4.4.2.Специализированные
- •4.4.2.1.Серверы
- •1 Принцип модульности
- •2 Принцип функциональной избирательности
- •3 Принцип генерируемости ос
- •4 Принцип функциональной избыточности
- •5 Принцип виртуализации
- •6 Принцип независимости программ от внешних устройств
- •7 Принцип совместимости
- •8 Принцип открытой и наращиваемой ос
- •9 Принцип мобильности (переносимости)
- •10 Принцип обеспечения безопасности вычислений
- •Тема 5. Память в реальном режиме
- •Тема 6. Память в защищенном режиме
- •Тема 7. Аппаратные irq
- •Тема 8 Видеопамять, видеокарты, мониторы
- •4)Основные характеристики мониторов
- •5)Виды мониторов
- •8)Перспективные конструкции и технологии мониторов Технология e-Ink
- •Технология Electro Wetting
- •Технология микродисплеев
- •Электромеханические панели
- •Тема 9 Модемы
- •1. Типовая система передачи данных
- •2) Каналы связи
- •1. 2. 1. Аналоговые и цифровые каналы
- •1. 2. 2. Коммутируемые и выделенные каналы
- •1. 2. 3. Двух- и четырехпроводные каналы
- •3) 3. Семиуровневая модель osi
- •1. 3. 1. Физический уровень
- •1. 3. 2. Канальный уровень
- •4) Факсимильная связь
- •1. 4. 1. Передача факсимильного изображения
- •1. 4. 2. Стандарты факсимильной связи
- •5) Классификация модемов
- •1. 6. 1. По области применения
- •1. 6. 2. По методу передачи
- •1. 6. 3. По интеллектуальным возможностям
- •1. 6. 4. По конструкции
- •1. 6. 5. По поддержке международных и фирменных протоколов
- •6)Устройство современных модемов
- •2. 1. Общие сведения
- •2. 2. Состав модема для ктсоп
- •2. 3. Скремблирование
- •2. 5. Устройство цифрового модема
- •2. 6. Линейное кодирование
- •1) Аналоговая модуляция
- •2) Дискретная модуляция аналоговых сигналов
- •8.2. Методы Шеннона-фано и Хаффмена
- •8.3. Алгоритм lzw
- •8.4. Сжатие данных в протоколах mnp
- •8.4.1. Протокол mnp5
- •8.4.2. Протокол mnp7
- •8.5. Сжатие данных по стандарту V.42bis
- •9.1 Протокол xModem
- •9.2. Протокол xModem-crc
- •9.3. Протокол xModem-ik
- •9.4. Протокол yModem
- •9.5. Протокол yModem-g
- •9.6. Протокол zModem
- •9.6.1. Требования протокола zModem
- •9.6.2. Формат кадров протокола zModem
- •9.6.3. Типы кадров zModem
- •9.6.4. Информация о файле в кадре zfile
- •9.6.5. Работа протокола zModem
- •Тема 10. Назначение чипсетов
- •Тема 11. Современные процессоры. Их архитектура
- •Характерные особенности risc-процессоров
- •3) Классы процессоров
- •4) Структура базового микропроцессора
- •Характеристики микропроцессоров фирмы Intel
- •Тема 12. Современные виды памяти. Их характеристики
- •1) Классификация ram(Random Access Memory):
- •2) Разновидности ram:
- •3)Виды ram и их характеристики:
- •Fpm ram (Быстрая страничная память)
- •Edo ram (память с усовершенствованным выходом)
- •Bedo dram (Пакетная edo ram)
- •Sdr sdram — синхронная dram
- •4)Новые перспективные виды памяти будущих компьютеров
- •Тема 13. Объединение компьютеров между собой
- •Естественные среды
- •Искусственные среды
- •Тема 14. Интернет
- •[Править]Каталоги
- •Тема 15. Жесткие диски и типы файловых систем
- •Название «Винчестер»
- •[Править]Характеристики
- •[Править]Уровень шума
- •[Править]Производители
- •[Править]Устройство
- •[Править]Гермозона
- •[Править]Устройство позиционирования
- •[Править]Блок электроники
- •[Править]Низкоуровневое форматирование
- •[Править]Геометрия магнитного диска
- •[Править]Особенности геометрии жёстких дисков со встроенными контроллерами [править]Зонирование
- •[Править]Резервные секторы
- •[Править]Логическая геометрия
- •[Править]Адресация данных
- •[Править]chs
- •[Править]lba
- •[Править]Технологии записи данных
- •[Править]Метод продольной записи
- •[Править]Метод перпендикулярной записи
- •[Править]Метод тепловой магнитной записи
- •[Править]Структурированные носители данных
- •[Править]Сравнение интерфейсов
- •[Править]raid 1
- •[Править]raid 2
- •[Править]raid 3
- •[Править]raid 4
- •[Править]raid 5
- •[Править]raid 5ee
- •[Править]raid 6
- •[Править]raid 7
- •[Править]raid 10
- •[Править]Комбинированные уровни
- •[Править]Сравнение стандартных уровней
- •[Править]Matrix raid
- •[Править]Программный (англ. Software) raid
- •[Править]Дальнейшее развитие идеи raid
- •Иерархия каталогов в Microsoft Windows
- •Классификация файловых систем
- •[Править]Задачи файловой системы
1. 3. 2. Канальный уровень
Канальный уровень часто называют уровнем управления звеном данных Средства этого уровня реализуют следующие основные функции
> формирование из передаваемой последовательности бит блоков данных определенного размера для их дальнейшего размещения в информационном поле кадров, которые и передаются по каналу,
> кодирование содержимого кадра помехоустойчивым кодом (как правило, с обнаружением ошибок) с целью повышения достоверности передачи данных,
> восстановление исходной последовательности данных на приемной стороне,
> обеспечение кодонезависимой передачи данных с целью реализации для пользователя (или прикладных процессов) возможности произвольного выбора кода представления данных;
> управление потоком данных на уровне канала, то есть темпа их выдачи в DTE получателя;
> устранение последствий потерь, искажений или дублирования передаваемых в канале кадров.
В качестве стандарта Для протоколов второго уровня организацией ISO рекомендуется протокол HDLC (High Level Data Link Control). Он получил в мире телекоммуникаций чрезвычайно широкое распространение. На основе протокола HDLC разработано множество других, являющихся по своей сути некоторой адаптацией и упрощением ряда его возможностей по отношению к конкретной области применения. К такому подмножеству HDLC относятся часто используемые протоколы SDLC (Synchronous Data Link Control), LAP (Link Access Procedure),LAPB (Link Access Procedure Balanced), LAPD (Link Access Procedure D-channel), LAPM (Link Access Procedure for Modems), LLC (Logical Link Network), LAPX (Link Access Procedure eXtention) и ряд других. Например, протоколы LAPB и LAPD применяются в цифровых сетях ISDN (Integrated Services Digital Network),' LAPM является базовым для стандарта коррекции ошибок V. 42, LAPX является полудуплексным вариантом HDLC и используется в терминальных сетях и системах, работающих в стандарте Teletex, а протокол LLC (Link Logic Control)реализован практически во всех сетях с множественным доступом (например, в беспроводных локальных сетях). На рис. 1. 5 изображено семейство протокола HDLC и области его применения.
Рис. 1. 5. Семейство протокола HDLC
Рис 1 6. Профиль протоколов для модема с функциями физического и канального уровней
Возможный профиль протоколов для модема, поддерживающего функции физического и канального уровней, представлен на рис. 1. 6. Считается, что компьютер соединяется с модемом посредством интерфейса RS-232, и уже модем реализует протокол модуляции V 34 и аппаратную коррекцию ошибок согласно стандарта V 42
Рис. 1 7 Профиль протоколов для DCE с множественным доступом
В некоторых сетях, основанных на каналах с многоточечным подключением, сигнал, принимаемый каждым DCE, является суммой сигналов, передаваемых от целого ряда других DCE Каналы связи в таких сетях называют каналами с множественным доступом или моноканалами, а сами сети называют сетями множественного доступа. Такими сетями являются некоторые спутниковые сети, наземные пакетные радиосети, а также локальные проводные и беспроводные сети.
Соответствующие уровни модели OSI при передаче в режиме множественного доступа несколько отличны от тех, что используются в СПД с двухточечными каналами. Второй уровень должен обеспечить верхние уровни виртуальным каналом для безошибочной передачи пакетов, а физический уровень должен предоставить битовый тракт. Появляется необходимость в промежуточном уровне для управления каналом с множественным доступом таким образом, чтобы из каждого DCE можно было передавать кадры без постоянных конфликтов с остальными DCE. Этот уровень называется уровнем управления доступом к среде передачи MAC (Medium Access Control). Обычно его считают первым подуровнем уровня 2, т. е. уровнем 2. 1. Традиционный канальный уровень в этом случае превращается в уровень управления логическим каналом LLC (Logical Link Control) и является подуровнем 2. 2. На рис. 1. 7 показана взаимосвязь второго уровня и подуровней LLC и MAC.