Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гульков Гидравлика, Учебное пособие по решению....doc
Скачиваний:
68
Добавлен:
15.04.2019
Размер:
2.86 Mб
Скачать

2.2. Типы задач при гидравлическом расчете трубопроводов

Из анализа уравнений (2.1) и (2.2) с учетом зависимостей для расчета потерь удельной энергии в потоке видно, что установившееся плавноизменяющееся движение потока реальной жидкости в трубопроводе характеризуется следующими параметрами: расходом жидкости Q, напором H или давлением р, геометрическими размерами трубопровода (длина l и диаметр d), материалом (шероховатость стенок трубы Δ и коэффициент шероховатости n), физическими свойствами жидкости (плотность  и кинематический коэффициент вязкости ). Так, число независимых уравнений равно двум. Следовательно, при гидравлическом расчете трубопроводов задача будет определенной, если число неизвестных параметров также не превысит двух. В противном случае должны быть учтены дополнительные условия. При этом заметим, что из всех перечисленных выше параметров длина трубопровода, шероховатость стенок трубы и коэффициент шероховатости, плотность и кинематический коэффициент вязкости жидкости, как правило, известны. С учетом этого можно наметить три основных типа задач, встречающихся при гидравлическом расчете трубопроводов.

Задачи первого типа: заданы Q, размеры трубопровода l и d, род жидкости и его рабочая температура, т.е.  и . Требуется определить напор Н, или давление р, при котором будет обеспечена его надежная работа.

Решение задач данного типа очень широко встречается в практике и можно привести ряд примеров его применения в области гидротехники, водоснабжения, машиностроения и т.д. В области гидротехники– различного рода магистральные трубопроводы и водоводы для целей орошения и обводнения, сифонные трубопроводы, дюкеры и т.д.; в водоснабжении – наружные водопроводные сети для бытовых, производственных и пожарных нужд; в машиностроении – масло-и топливопроводы в различных машинах и установках.

Задачи второго типа: заданы напор H, или давление р, размеры трубопровода l и d, род жидкости и его рабочая температура, т.е.  и . Требуется определить расход Q, или так называемую пропускную способность трубопровода.

Этот тип задач также очень широко встречается в практике и в качестве примеров можно привести следующие условия применения: определение пропускной способности трубопровода при его подсоединении к уже существующей водонапорной башне или насосно-силовой установке; напорное движение жидкости в туннелях, трубчатых водосбросах и водовыпусках различного рода и в ряде других случаев.

Задачи третьего типа: заданы напор Н, или давление р, расход жидкости Q, длина трубопровода l, род жидкости и его рабочая температура, т.е.  и .Требуется определить диаметр трубопровода или параметры живого сечения.

Данный тип задач имеет очень широкое практическое применение и примеры для него можно привести аналогично первому типу. Следует отметить, что для него в зависимости от назначения трубопровода могут быть поставлены различные исходные условия: подобрать диаметр трубопровода с полным использованием напора, или давления для пропуска заданного расхода, т.е. при проектировании трубопровода с минимальной массой; определить экономически наивыгоднейший диаметр из условия минимальных приведенных затрат на его строительство и эксплуатацию. Является очевидным, что методики решения задач в этом случае будут различны.

В некоторых случаях при гидравлических расчетах трубопроводов могут ставиться дополнительные исходные условия и соответственно, требования к результатам расчета. Например, при расчетах сифонного трубопровода – определение места и величины максимального вакуума, всасывающего трубопровода насоса – определение кавитационного запаса и т.д. Следует отметить, что в большинстве случаев решение задачи сводится к одному из указанных выше типов, а затем рассчитываются дополнительные требования. Поэтому, хорошо освоив методики решения задач основных типов, можно легко справиться с решением любой задачи при гидравлическом расчете трубопроводов.