
- •Периодическая система элементов д.И.Менделеева.
- •Электронная структура атома и свойства элементов.
- •Периодическая система элементов д.И.Менделеева.
- •Не завершены
- •Электронная структура атома и свойства элементов.
- •Эффективные радиусы атомов, ǻ 1,27 1,39 1,40
- •Орбитальные и эффективные радиусы некоторых атомов и ионов
- •3. Электронные формулы и электронно-структурные схемы атомов. Электроны в атоме распределяются в соответствии со значениями их четырех квантовых чисел и с учетом следующих правил (или принципов):
- •Распределение электронов в атоме, т.Е. Электронную структуру атома, можно выразить в виде электронной формулы или электронно-структурной схемы.
- •2. Основные положения метода валентных связей.
- •Ковалентная связь обладает свойствами насыщаемости, направленности и поляризуемости. Разберем эти свойства.
- •3. Межмолекулярное взаимодействие. Это взаимодействие молекул подразделяется на ориентационное, индукционное и дисперсионное.
- •1. Понятия и определения химической термодинамики.
- •2. Изменение энтальпии в химических реакциях.
- •Изменение энтропии в химических реакциях.
- •Тема 6: Энергетика и направление химических реакций.
- •Энтропия системы. Уравнение Больцмана.
- •3. Энергия Гиббса. Направления химических реакций.
- •Так как g298 реакции 0, то при 298к данная реакция возможна в прямом направлении.
- •Зависимость скорости реакции от концентрации веществ.
- •Зависимость скорости реакции от температуры. Энергия активации.
- •Лекция 8: Химическое равновесие.
- •Смещение химического равновесия. Принцип Ле-Шателье.
- •Смещается вправо (), а при понижении давления влево ().
- •Энергия активации каталитических реакций и сущность действия катализатора.
- •Многокомпонентные системы
- •3. Растворы.
- •Тема 10: Коллигативные свойства разбавленных растворов.
- •Законы Рауля.
- •Осмос и осмотическое давление растворов неэлектролитов. Биологическое значение осмоса и осмотического давления.
- •Понятие о теории сильных электролитов. Активность.
- •Кислотно-основная ионизация.
- •Классификация неорганических соединений с позиции теории электролитической диссоциации.
- •Расчёт концентрации ионов водорода и гидроксильных групп в водном растворе.
- •Классификация неорганических соединений с позиции теории электролитической диссоциации.
- •Расчёт концентрации ионов водорода и гидроксильных групп в водном растворе.
- •Интервал перехода и изменение окраски индикаторов
- •Типы гидролиза солей.
- •Факторы, влияющие на процесс гидролиза.
- •Типы гидролиза солей.
- •Факторы, влияющие на процесс гидролиза
- •Метод полуреакций.
- •Окислительно-восстановительные потенциалы (электродные потенциалы). Определение направления ов-реакций.
- •Лекция 15: Комплексные соединения. Природа химической связи химических соединений.
- •Диссоциация комплексных соединений. Константа образования и нестойкости комплексов.
- •3. Природа химической связи в комплексных соединениях.
- •Биологическая роль и применение комплексных соединений.
- •Теория кристаллического поля.
- •Изомерия комплексных соединений.
Зависимость скорости реакции от концентрации веществ.
Скорость реакции возрастает с увеличением числа столкновений реагирующих веществ в единицу времени и в единице объема системы, в которой проводится реакция. Поэтому, чем больше концентрация реагирующих веществ, тем больше число таких столкновений, а, следовательно, больше будет скорость реакции. Таким образом, с повышением концентрации реагирующих веществ (с, моль/л) скорость реакции (υ) будет увеличиваться.
Закон, выражающий зависимость скорости реакции от концентрации реагирующих (то есть исходных) веществ, называется законом действующих масс (установлен в 1867 г.), который формулируется так:
При постоянной температуре скорость гомогенной реакции прямо пропорциональна произведению концентраций реагирующих веществ (причем концентрации берутся в степенях, равных коэффициентам перед формулами веществ в уравнении реакции).
Например, для гомогенной реакции:
nA + mB D
закон действующих масс (то есть выражение скорости реакции) имеет вид:
или
где
υ - скорость гомогенной реакции,
сА и сВ – концентрации веществ А и В (моль/л),
k – коэффициент пропорциональности, он называется константой скорости реакции, которая характеризует реакционную способность реагирующих веществ.
Из уравнения следует, что если СА = СВ = 1 моль/л, то k = υ, то есть константа скорости реакции (k) численно равна скорости реакции (υ), когда концентрации реагирующих веществ равны 1 моль/л.
Величина константы скорости k зависит:
от природы реагирующих веществ;
от температуры (с повышением температуры значение k увеличивается);
от присутствия катализатора.
Величина константы скорости k не зависит от концентрации реагирующих веществ.
Для гетерогенной реакции, например:
С(тв) + О2(г) СО2(г)
выражение скорости реакции будет иметь вид:
При этом концентрация твердого углерода будет практически постоянной величиной, поэтому на скорость реакции влиять не будет и поэтому в выражение скорости реакции не входит.
Зависимость скорости реакции от температуры. Энергия активации.
При повышении температуры скорость большинства реакций увеличивается. Зависимость скорости реакции от температуры можно изобразить на графике:
Однако некоторые реакции с увеличением температуры замедляются, например, реакции с участием ферментов. При повышении температуры фермент уменьшает свою каталитическую активность, поэтому скорость реакции тоже уменьшается.
Зависимость скорости реакции от температуры можно выразить с помощью приближенного правила Вант-Гоффа (1884 г.), которое гласит:
При повышении температуры на каждые 10 скорость большинства реакций увеличивается в 2 – 4 раза, то есть:
,
где υt – скорость реакции при температуре t;
υt+10 – скорость реакции при температуре t + 10, то есть на 10 больше;
- температурный коэффициент скорости реакции (он показывает во сколько раз возрастает скорость реакции (или константа скорости) при повышении температуры на 10.
Если температура повысилась не на 10, а изменилась с t1 до t2, то правило Вант-Гоффа записывается так:
Отсюда:
Правило Вант-Гоффа – приближенное правило. Точную зависимость константы скорости реакции (k) от температуры (Т) выражает уравнение Аррениуса (1889 г.):
,
где А – постоянная величина для данной реакции;
e – основание натурального логарифма;
R – 8,314 Дж/мольК – газовая постоянная;
Е – энергия активации реакции.
Уравнение Аррениуса можно записать в логарифмической форме:
Из уравнения Аррениуса следует, что с увеличением температуры (Т) значение константы скорости (k) увеличивается. И, наоборот, чем больше энергия активации реакции (Е), то есть, чем выше энергетический барьер, тем меньше значение k.
В 1889 г. Аррениус создал теорию активных (эффективных) столкновений (соударений). По этой теории к химическому взаимодействию будут приводить лишь столкновения активных частиц, то есть частиц (молекул, ионов и др.), которые в момент столкновения друг с другом обладают некоторым избытком энергии по сравнению со средней энергией всех исходных частиц реагирующих веществ. Этот избыток энергии активных частиц (по сравнению со средней энергией всех частиц) называется энергией активации, которая входила в уравнение Аррениуса (см. выше).
На рисунке на оси ординат отложена потенциальная энергия системы, а по оси абсцисс отложен путь реакции, то есть превращение исходных веществ А и В в продукты реакции АВ.
Еисх. – средняя энергия всех исходных частиц А и В;
Екон. – средняя энергия частиц АВ, то есть продукта реакции;
Е – энергия активации реакции.
Из рисунка видно, что превращение исходных веществ А и В в продукт реакции АВ протекает через энергетический барьер. Только те молекулы А и В могут перейти в продукт АВ, которые в состоянии преодолеть этот энергетический барьер, то есть обладают избытком энергии, равной или большей, чем энергия активации.
Таким образом, энергия активации (Е) – это энергетический барьер, который отделяет исходные вещества А и В от продукта реакции АВ.
Чем больше энергия активации (Е) реакции, то есть больше высота энергетического барьера, тем меньше скорость реакции и константа скорости реакции (это следует и из уравнения Аррениуса).
Энергия активации различных реакций различна. Ее величина как раз и показывает влияние природы реагирующих веществ на скорость реакции. Энергия активации молекулярных реакций (H2 + I2 = 2HI и др.) обычно велика. Поэтому скорость таких реакций при низких температурах, как правило, мала и для протекания таких реакций требуется нагревание, иногда очень сильное нагревание. В то же время энергия активации ионных реакций (с участием ионов, например, Ag + Cl- AgCl) и радикальных реакций (с участием радикалов) обычно невелика и такие реакции протекают очень быстро, то есть скорости этих реакций большие.