
- •Потенциал покоя нейрона. Распределение нейронов внутри и снаружи мембраны. Калий-натриевый насос.
- •Типы йонных каналов. Натриевые каналы, их работа. Генерация и распространение потенциала действия. Рефрактерный период.
- •Строение синапса. Меха низм выброса медиатора. Жизненный цикл медиаторов.
- •Ионотропные рецепторы. Лигандзависимые каналы. Возбуждающий и тормозной постсинаптический потенциалы. Пространственная и временная суммация.
- •Метаботропные рецепторы. Последовательность протекающих в них процессов. Вторичные посредники.
- •Механизм экспрессии генов. Быстрые немедленные гены. Роль экспрессии генов в формировании долговременной памяти.
- •Аминокислотные медиаторы. Функционирование nmda – глутаминовых рецепторов.
- •Аминокислотные тормозные медиаторы. Роль гамк и глицина, их антагонисты.
- •Ацетилхолин, его синтез и разрушение. Типы ацетилхолиновых рецепторов и их локализация в организме.
- •Биогенные амины. Локализация и функция дофамина, норадреналина и серотонина.
- •Регуляторные пептиды. Строение пептидов. Пептидный континуум.
- •Пептиды гипоталамуса. Либерины и статины. Вазопрессин и окситоцин, их роль в организме.
- •Гормоны гипофиза, их роль в процессах жизнедеятельности.
- •Гормоны щитовидной железы, надпочечников и половых желез, их химическая природа и функции.
- •Трийодтиронин
- •Мозговой слой:
- •Гормоны поджелудочной и околощитовидной желез, их химическая природа и функции.
- •17. Строение и функции внс и ее отделов. Медиаторы внс
- •18.Строение скелетных мышц. Теория скользящих нитей. Нервно-мышечный синапс. Электромеханическое сопряжение.
- •19.Двигательная единица. Одиночное и тетаническое сокращение мышечного волокна. Утомление. Вегетативная регуляция работы скелетных мышц.
- •Моно- и полисинаптические рефлексы спинного мозга. Миотатический и обратный миотатический рефлекс.
- •22.Виды торможения в спинном мозгу. Реципрокное и возвратное торможение.
- •23.Двигательные центры стволовой части головного мозга. Функции черной субстанции, четверохолмия и мозжечка.
- •25.Доли коры больших полушарий и локализация функций в них
- •26. Гипоталамус, его локализация в мозгу и функции. Связь гипоталамуса с гипофизом.
- •27. Таламус и его функции. Специфические и неспецифические ядра таламуса.
- •28. Лимбическая система и входящие в нее образования. Роль лимбической сисемы и регуляции эмоционального поведения и процессов памяти.
- •29.Понятие об электроэнцефалограмме. Основные ритмы ээг. Судорожная активность. Ретикулярная формация.
- •30.Регуляция сна и бодрствования. Фазы сна, их проявления и продолжительность.
22.Виды торможения в спинном мозгу. Реципрокное и возвратное торможение.
Реципрокное торможение - процесс в центральной нервной системе, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток.
Возвратное торможение- Т. мотонейронов спинного мозга, осуществляемое по принципу отрицательной обратной связи через аксоны мотонейрона, образующие возвратную коллатераль, заканчивающуюся на тормозных нейронах - клетках Реншоу. Клетки Реншоу (КР) (англ. Renshaw cells) — это тормозные вставочные нейроны, расположенные в передних рогах спинного мозга, несколько дорзальнее и медиальнее, чем мотонейроны (МН). Механизм представлен короткой цепочкой отрицательной обратной связи, через которую мотонейрон сам себя тормозит, но в том случае, когда он посылает разряд в аксон. Общая схема деятельности такой цепочки выглядит следующим образом. На клетках Реншоу заканчиваются возвратные коллатерали аксонов, которые в пределах серого вещества отдают альфа-мотонейроны, иннервирующие двигательные мышцы, и поэтому они всегда «знают», насколько сильно возбужден нейрон. Клетки Реншоу, в свою очередь, заканчиваются на мотонейронах тормозными синапсами. Каждый из этих импульсов, приходя к мотонейронам, вызывает в них тормозящую реакцию, которая суммируется до тех пор, пока длится разряд клетки Реншоу. В качестве нейромедиатора клетки Реншоу используют глицин — тормозный медиатор, действующий на альфа-мотонейроны. Клетки Реншоу играют роль «ограничителей» или «регуляторов» системы альфа-мотонейронов, и, таким образом, помогают предотвратить тетанус и повреждение мышцы. Благодаря их активности импульсация мотонейронов поддерживается в оптимальном диапазоне, необходимом для управляемого сокращения мышц.
23.Двигательные центры стволовой части головного мозга. Функции черной субстанции, четверохолмия и мозжечка.
В мозге существует 2 системы управления движениями: пирамидная и экстропирамидная. Пирамидная это произвольность, пирамидные тракты. Экстрапирамидные- это все подкорковые двигательные центры не относящиеся к пирамидной системе. Они объединяются в систему и построены по иерархическому принципу подчинения.
4 основных нисходящих тракта от этих систем:
Текто-спинальный
Рубро-спинальный (мышцы-сгибатели, готовность к прыжку)
Вестибуло-спинальный (разгибатели, поддержание вертикальной позы)
Ретикуло-спинальный (движения туловища)
В продолговатом мозгу первичные подкорковые зрительные, слуховые центры.
Кортикоспинальный тракт начинается в первичной и вторичной моторных зонах, локализованных в прецентральной извилине, а также от первичной и вторичной соматосенсорной коры в постцентральной извилине
Мозжечок-отдел головного мозга, располагающийся в задней черепной ямке под затылочными долями больших полушарий.
Влияет на систему подсознательной регуляции движений- экстрапирамидную систему.
Координирует активность моторной коры и спинного мозга, способствуя более гладкому выполнению контролируемых ими тонких движений.
Обеспечивает хранение и своевременное использование уже выработанных алгоритмов и программ сложнокоординированных движений
Активно участвует совместно с КБП и подкорковыми центрами в формировании новых двигательных реакций.
Мозжечок фактически является самообучающейся системой, которая в свою очередь существенно облегчает и ускоряет процессы обучения в больших полушариях и стволовых двигательных центрах.
Ф-ии черной субстанции-