
- •1.Предмет физики.Еденицы физических велечин.Международная система си
- •2.Система отчёта.Траектория,путь,перемещение
- •3.Скорость.Ускорение и его состовляющие
- •4.Угловая скорость и угловое ускорение
- •5.Законы Ньютона и примеры проявления
- •6.Закон сохранение импульса.Центр масс
- •7.Энергия.Работа.Мощность.Закон сохранения энергии
- •8.Удар абсолютно упругих и не упругих тел.
- •9.Момент инерции .Кинетическая энергия вращения.
- •10.Момент силы. Основные уравнения динамики вращательного движения твёрдого тела.
- •11.Момент импульса и закон его сохранения.
- •Определение
- •12.Свободные оси. Гироскоп
- •13.Сила тяжести и вес. Невесомость. Поле тяготения и его напряженность.
- •14.Космическая скорость.
- •15.Неинерциальная система отсчёта. Силы инерции.
- •16.Давление в жидкости и газе. Уравнение неразрывности
- •17.Уравнение Бернулли и следствия из него.
- •18.Вязкости. Ламинарный и турбулентный режимы течения жидкости.
- •19.Основные положения мкт и их опытное обоснование.
- •20.Основные законы идеального газа. Изопроцессы.
- •2) Изобарный процесс
- •Изохорный процесс
- •Изотермический процесс
- •21.Распределение Максвелла по скоростям молекул идеального газа.
- •22.Барометрическая формула. Распределение Больцмана.
- •23.Явление переноса в термодинамических системах.
- •24.Число степеней свободы. Распределение энергии по степеням свободы молекул.
- •25 Первое начало термодинамики. Работа газа в термодинамике
- •26 Теплоемкость. Уравнение Майера.
- •27Адиабатический процесс. Круговые процессы.
- •28 Энтропия. Второе и третье начало термодинамики.
- •29 Тепловые двигатели и холодильные машины. Цикл Карнои его кпд для идеального газа.
- •30 Уравнение Ван-Дер-Ваальса.
- •31. А)Свойства жидкостей.
- •32. А)Смачивание.
- •Б)Капиллярность.
- •33. А)Твердые тела.
- •Классификация твёрдых тел
- •Б)Теплоемкость твердых тел.
- •35.А) диаграмма состояния
- •Б) тройная точка
- •36. Постулаты специальной теории относительности. Интервал между событиями. Следствия из преобразования Лоренца
- •Нетрудно доказать, что вообще в двух произвольных инерциальных со к и к/
5.Законы Ньютона и примеры проявления
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Пример. В качестве примера выполнения 1 закона Ньютона можно рассмотреть движение парашютиста (см. рис. 2). Он равномерно приближается к земле, когда действие силы тяжести компенсируется силой натяжения строп парашюта, которая в свою очередь обусловлена сопротивлением воздуха.
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
Пример. На рис. 3 показано, как движется мяч после столкновения с битой. Чем больше сила удара, тем с большим ускорением начнет двигаться мяч и, следовательно, тем большую скорость он приобретет за время удара.
Третий
закон Ньютона
Этот закон объясняет, что происходит с
двумя взаимодействующими телами. Возьмём
для примера замкнутую систему, состоящую
из двух тел. Первое тело может действовать
на второе с некоторой силой
,
а второе — на первое с силой
.
Как соотносятся силы? Третий закон
Ньютона утверждает: сила действия равна
по модулю и противоположна по направлению
силе противодействия. Подчеркнём, что
эти силы приложены к разным телам, а
потому вовсе не компенсируются.
Пример. На рис. 5 показано взаимодействие космонавта и спутника (космонавт пытается придвинуть спутник к себе). Они действуют друг на друга с равными по величине, но противоположными по направлению силами. Отметим, что ускорения, с которыми космонавт и спутник будут перемещаться в космическом пространстве будут разными из-за разницы в массах этих объектов.
Законы Ньютона позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют предсказывать траектории движения планет, рассчитывать траектории космических кораблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяснить течение воды, движение многочисленных и разнообразных транспортных средств (движение автомобилей, кораблей, самолетов, ракет). Для всех этих движений, тел и сил справедливы законы Ньютона.
6.Закон сохранение импульса.Центр масс
1) Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
2) Центр масс (центр ине́рции; барице́нтр) в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого.
Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:
где
— радиус-вектор центра
масс,
—
радиус-вектор i-й
точки системы,
— масса i-й
точки.
Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибовес массы P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.