
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
- •Основные направления развития современной биофизики. Уровни биофизических исследований.
- •Классификация тд систем; особенности живых организмов, как тд систем.
- •6. Характеристика тд функций, применяемых для анализа биолог процессов.
- •7. Внутренняя энергия, теплота и работа, как тд функции.
- •Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Закон Гесса, его применимость к биопроцессам. Следствие закона Гесса, его практическое значение.
- •Формулировка второго закона тд. Своеобразие его проявления в биосистемах.
- •Энтропия как функция состояния системы. Связь энтропии с тд вероятностью состояния системы.
- •Уравнение второго закона тд. Понятие свободной и связанной энергии.
- •Доказательства применимости второго закона тд к биосистемам.
- •Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона тд для открытых систем.
- •Теорема Пригожина и направленность эволюции биосистем. Энтропия и биологический прогресс.
- •Организм и клетка как химическая машина. Химический потенциал живой системы.
- •Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •Типы энергетического обмена в биосистемах
- •Типы аккумуляции и пути расходования энергии в биосистемах. Тд сопряжение экзэргонической и эндэргонической стадии биопроцессов; примеры.
- •Тд характеристика анаэробного распада глюкозы. Расчёт кпд.
- •Тд характеристика окисления пировиноградной кислоты в цикле Кребса. Расчёт кпд.
- •Этапы уницикации энергетических субстратов в процессах катаболизма.
- •Современное представление о строении и переносе электронов в дыхательной цепи митохондрий.
- •Современные представления о механизме сопряжения окисления и фосфорилирования в биосистемах.
- •Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Биофизика фотосинтеза: физическая и физико-химическая стадии, квантовый выход. Расчёт кпд.
- •36. Элементарные кинетические уравнения. Скорость реакции. Константа равновесия обратимой реакции.
- •37. Факторы, определяющие скорость реакций биологических процессов.
- •38. Зависимость скорости реакции от концентраций реагирующих веществ. Молекулярность реакций. Порядок реакций.
- •39. Различия скоростей превращения вещества в реакциях различного порядка.
- •40 Особенности кинетики биологических процессов. Кинет последовательно- и параллельно-протекающих реакций в многостадийном процессе.
- •41.Принцип обратной связи и лимитирующего звена (определяющей реакции) и их роль в регуляции скоростей протекания биологических процессов.
- •42 Зависимость скорости процесса от температуры. Анализ ур-ия Аррениуса.
- •43.Энергия активации реакции (процесса). Экспериментальной определение величины энергии активации.(см №42 тоже)
- •44 Особенности кинетики ферментативных реакций. Понятие об активности ферментов. Единицы измерения активности и количества ферментов.
- •45/ Основные положения теории ферментативной кинетики и общей теории механизма действия ферментов.
- •46/ Вывод и анализ уравнения Михаэлиса-Ментен для односубстратной ферментативной реакции.
- •47 Графическии анализ результатов кинетического исследования ферментативной реакции (v0 число "оборотов", Vmах,Кm).
- •48.Физический смысл основных кинетических характеристик ферментативной реакции (Vmax, Кm).
- •49/ Использование уравнения Лайнуивера-Берка для определения кинетических характеристик ферментативной реакции.
- •50/Кинетика ингибирования ферментативных реакций. Обратимое и необратимое ингибирование. Типы обратимого ингибирования.
- •51. Графический анализ конкурентного ингибирования по уравнению Лайнуивера-Берка
- •52. Графический анализ неконкурентного ингибирования по уравнению Лайнуивера-Берка
- •54 Предмет, задачи молекул.Биофизики. Методы исследования
- •55 Биополимеры как основа организации биоструктур, особенности строения, функции
- •56Типы взаимодействия в биополимерах
- •57Факторы стабильности пространственной структуры биологических макромолекул
- •58 Биофизика белков: строение полипептидной цепи, разнообразие типов пространственной структуры молекул
- •59 Физические свойства белков , денатурация, ренатурация. Биороль
- •60 Биофизика нуклеиновых кислот (нк):строение полипептидной цепи, особенности пространственной сьруктуры
- •61 Физические модели нуклеиновых кислот(нк), методы изучения днк и рнк
- •62 Физич. Свойства нк. Денатурация, ренатурация: механизм, качеств. И количеств характеристика, биологич. Роль. Метод молеклярной гибридизации.
- •63 Осмотическое давление биол. Жидкостей, его измерение; влияние поверхностной активности веществ на величину поверхностного натяжения, биологическая роль.
- •64. Поверхностное натяжение воды и биологических жидкостей, его измерение; влияние поверхностно активных веществ на величину поверхностного натяжения; биологическая роль.
- •65. Развитие представлений о строении биомембран; типы моделей мембран, их научное значение.
- •66.Биофизическая характеристика молекулярных компонентов мембран: белков, липидов, углеводов и их комплексов.
- •67.Вода как составной компонент биомембран: структура, свойства, биологическая роль.
- •68.Типы межмолек улярных взаимодействий в мембранах, их природа и роль в стабилизации мембранных структур.
- •69.Физические свойства биомембран. Подвижность компонентов мембраны (вращательное движение, латеральная и вертикальная диффузия).
- •70. Фазовые переходы в мембранах; факторы, инициирующие фазовые переходы мембран. Жидкие кристаллы в структуре мембран, их свойства.
- •71. Биофизическая характеристика мембранных липидов: строение, свойства, классификация
- •72.Искусственные мембраны, их строение, классификация, теоретическое и практическое значение. Отличие от природных мембран.
- •73. Монослой на границе раздела фаз. Липосомы и протеолипосомы. Бислойные липидные мембраны.
- •74. Проблема проницаемости и транспорта веществ через биомембраны. Методы исследования проницаемости.
- •75. Классификация и краткая характеристика типов транспорта веществ через биомембраны.
- •76. Диффузия как тип транспорта веществ через биомембраны; скорость и движущие силы диффузии. Закон Фика.
- •77. Проницаемость клеток для воды, электролитов и неэлектролитов. Физиологическая роль и практическое значение диффузии.
- •78. Облегченная диффузия и транслокация радикалов как типы транспорта веществ через биомембраны; движущие силы, механизмы, биологическая роль.
- •79.Активный транспорт молекул и ионов через биомембраны, его характеристика, свойства и функции.
- •80. Сходcтва и отличия активного транспорта и облегченной диффузии веществ через биомембраны. Доказательства наличия активного транспора в условиях in vitro.
- •81. Транспортные атф-азы, их классификация и роль в активном транспорте ионов. Представление о бионасосах.
- •82. Транспорт ионов кальция через биомембраны, его механизмы, регуляция и биологическая роль
- •83. Биоэлектрические явления: общая характеристика, классификация
- •84. Механизм возникновения электродных и ионных биопотенциалов, их измерение. Формула Нернста.
- •85. Мембранный потенциал и факторы, определяющие его величину.Передача нервного импульса по миелиновым и немиелиновым нервным волокнам.
- •86. Электрокинетический потенциал: возникновение, измерение и факторы, определяющие его величину. Примеры электрокинетических явлений, их характеристика и научно-практическое значение.
- •87. Общая характеристика механохимических процессов. Основные типы сократительных и подвижных систем.
- •88.Биофизическая характеристика мышечных и немышечных сократительных белков.
- •89.Основные характеристики поперечно-полосатой мышцы как механического преобразователя энергии; структура саркомеров, ее изменение при мышечном сокращении.
- •90.Молекулярные механизмы мышечного сокращения, его регуляция.
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
59 Физические свойства белков , денатурация, ренатурация. Биороль
Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-химических и биологических свойств при физиологических значениях температуры и рН среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.
Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению количества свободных функциональных SH-групп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). При денатурации белка, вызванной 8М мочевиной или другим агентом, разрушаются в основном нековалентные связи (в частности, гидрофобные взаимодействия и водородные связи). Дисульфидные связи в присутствии восстанавливающего агента меркаптоэтанола разрываются, в то время как пептидные связи самого остова полипептидной цепи не затрагиваются. В этих условиях развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры
При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы включая биологическую активность. Таким образом, при денатурации белковая молекула полностью теряет биологические свойства, демонстрируя тем самым тесную связь между структурой и функцией. Для практических целей иногда используют процесс денатурации в «мягких» условиях, например при получении ферментов или других биологически активных белковых препаратов в условиях низких температур в присутствии солей и при соответствующем значении рН . При лиофилизации белков (высушивание в вакууме путем возгонки влаги из замороженного состояния) для предотвращения денатурации часто пользуются химическими веществами (простые сахара, глицерин, органические анионы).
60 Биофизика нуклеиновых кислот (нк):строение полипептидной цепи, особенности пространственной сьруктуры
НК являются обязательными участниками процессов синтеза белков. Основная цепь НК состоит из чередующихся звеньев фосфорной кислоты и сахара (рибозы в РНК; дезоксирибозы в ДНК). К сахарам присоединяются азотистые основания, которые уже не повторяют друг друга.
Общая схема строения цепи:
Рибоза
Дезоксирибоза
Подобно тому, как в белках фигурируют 20 аминокислотных остатков, так в ДНК и РНК фигурируют 4 азотистых основания. Но это правило менее строгое и наряду с каноническими основаниями встречаются производные от них - минорные основания. В ДНК фигурируют цитозин (Ц), тимин (Т), аденин (А), гуанин (Г); в РНК - цитозин (Ц), тимин (Т), аденин (А), урацил (У).
Для всех азотистых оснований характерно наличие центрального кольца по типу бензольного. Наличие двойных связей приводит к наличию делокализованных электронов, принадлежащих всему кольцу.
Соединения азотистых оснований с рибозой и дезоксирибозой называются нуклеозидами ( соответственно, рибонуклеозиды и дезоксирибонуклеозиды).
Аналогичные нуклеозиды Г, Т, У называются соответственно: гуанозин, тимидин, уридин.
В результате фосфорелирования образуются ди- и трифосфаты. Эти мономерные соединения играют важнейшую роль в биоэнергетических процессах.
Вместо R: Аденозиндифосфат (АДФ), Аденозинтрифосфат (АТФ):
Образование нуклеиновой кислоты происходит путем поликонденсации нуклеозидтрифосфата. При включении в цепь каждого нуклеозида отщепляется одна молекула дифосфата - пирофосфорная кислота.
Нуклеиновые кислоты подобно белковым цепям являются линейными неразветвленными цепями. Первичная структура нуклеиновой кислоты определяется последовательностью азотистых оснований. Первичная структура ДНК была расшифрована в 1962 году, и сегодня существует правило синтеза полинуклеотидных цепей. Одно из нескольких экспериментальных правил, справедливых для ДНК, - правило Чаргаффа (с точностью 3 - 5%):
ДНК содержится в основном в хромосомах клетки и ее молекулярный вес достигает миллиардов (самые длинные биополимеры). РНК содержится в цитоплазме ядер клеток, в растительных вирусах и фагах.
Принято различать четыре типа РНК:
Рибосомальная РНК (молекулярный вес - 2*106);
Матричная РНК (3*104 - 7*104) {так как средний вес рибонуклеотида равен 224, то самые короткие цепи матричной РНК содержат более 150 нуклеотидов;
Транспортная РНК (2*104) (около 80 нуклеотидов);
Вирусная РНК.
Функции 1. поддержание существования живых организмов 2. хранение и передача наследственной информции 3. непосредственное участие в передаче наследсвенной инфо (ДНК?мРНК?белок) 4. Составные компоненты НК выполняют ряд функций:
а) участие в качестве коферментов и аллостерических эффекторов б) участие в аккумулировании Е.
Формы НК: 1. линейные 2. развёрнутые 3. кольцевые.
Разветвлённые - У-ветви, D-петли.
Кольцевые: 1-цеп, 2-цеп, замкнутые, катенены.
Роль Чаргаффа: 1. А+Ц=Т+.Г 2. (А+Г)/(Ц+Т)=1 Молярная доля пуринов = молярной доле пиримидинов. 3. А=Т. Г=Ц 4. Существующее условие - коэффициент специфичности - отношение Г+Ц / А+Т. % ГЦ больше, тем больше плотная молекула ДНК