
- •2.Вычисление двойного нтеграла в декартовых координатах.
- •5. Вычисление объёмов тел площадей плоских фигур с помощью двойного интеграла.
- •7. Механические приложения двойного интеграла.
- •8. Определение и свойства тройного интеграла.
- •4)Если в области r,то ;
- •5)Если в области r и , то ;
- •6)Если на r и области r и s являются непересекающимися , то . Здесь означает объединение этих двух областей.
- •10.Вычисление тройного интеграла в цилиндрических координатах
- •11. Тройной интеграл в сферических координатах.
- •12.Механические приложения тройного интеграла.
- •13. Криволинейный интеграл I рода. Основные свойства кри-I.
- •14.Криволинейный интеграл II рода. Основные свойства кри-II.
- •15. Формула Остроградского – Грина.
- •16.Приложения кри(1-2)
- •17.Поверхностный интеграл 1-го рода
- •18.Поверхностный интеграл II рода.
- •19.Формула Стокса
- •20. Пови-2 по замкнутым поверхностям. Формула Астроградского.
- •21.Понятие скалярного поля. Поверхности и линии уровня.
- •22.Производная скалярного поля по направлению. Градиент.
- •23. Понятие векторного поля. Векторные линии векторного поля.
- •24.Циркуляция и ротор векторного поля.
- •25.Поток и дивергенция векторного поля.
- •26.Оператор Гамильтона и некоторые его применения.
- •27.Потенциальное,соленоидальное и гармоническое векторные поля.
- •28.Понятие числового ряда и его суммы. Свойства числовых рядов.
- •29.Необходимый признак сходимости ряда.
- •30.Интегральный признак Коши.
- •31.Признак сравнения рядов с положительными членами.
- •32.Признак Даламбера.
- •33.Радикальный признак Коши
- •34.Знакопеременные ряды. Абсолютная и условная сходимость рядов.
- •35.Знакочередующиеся ряды. Признак Лейбница.
- •36.Функциональные ряды. Свойства правильно сходящихся рядов.
- •37.Степенные ряды. Область сходимости.
- •38.Свойства степенных рядов.
- •39.Ряды Тейлора и Маклорена.
33.Радикальный признак Коши
Иногда удобно пользоваться радикальным признаком Коши для исследования сходимости числового ряда с положительными членами. Этот признак во многом схож с признаком Даламбера.Теорема 5.6 (радикальный признак Коши). Пусть дан ряд (5.1) с положительными членами и существует конечный или бесконечный предел
.
Тогда:
при ряд сходится;
при ряд расходится.
При радикальный признак Коши не дает ответа на вопрос о сходимости или расходимости ряда. В этом случае сходимость ряда исследуется с помощью других признаков.
34.Знакопеременные ряды. Абсолютная и условная сходимость рядов.
Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным. Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.
Знакочередующимся рядом называется ряд вида
,
где
для всех
(т.е. ряд, положительные и отрицательные
члены которого следуют друг за другом
поочередно).
Абсолютная и условная сходимости рядов
Знакочередующийся ряд является частным случаем знакопеременного ряда.
Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.
Теорема 6.2. Пусть дан знакопеременный ряд
.
(6.2)
Если сходится ряд, составленный из модулей членов данного ряда
,
(6.3)
то сходится и сам знакопеременный ряд (6.2).
Надо отметить, что обратное утверждение неверно: если сходится ряд (6.2), то это не означает, что будет сходиться ряд (6.3).
Определение 6.3. Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.
Знакопеременный ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.
Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место. Такие ряды обладают рядом свойств, которые сформулируем без доказательства.
1)Если ряд абсолютно сходится и имеет сумму , то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму , что и исходный ряд (теорема Дирихле).
2)Абсолютно сходящиеся ряды с суммами и можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна (или соответственно ).
3)Под произведением
двух рядов
и
понимается ряд вида:
Произведение двух
абсолютно сходящихся рядов с суммами
и
есть абсолютно сходящийся ряд, сумма
которого равна
.
Таким образом,
абсолютно сходящиеся ряды суммируются,
вычитаются, перемножаются как обычные
ряды. Суммы таких рядов не зависит от
порядка записи членов.В случае условно
сходящихся рядов соответствующие
утверждения (свойства), вообще говоря,
не имеют места.Так, переставляя члены
условно сходящегося ряда, можно добиться
того, что сумма ряда измениться. Например,
ряд
условно сходится по признаку Лейбница.
Пусть сумма этого ряда равна
.
Перепишем его члены так, что после одного
положительного члена будут идти два
отрицательных. Получим ряд
Сумма уменьшилась вдвое! Более того, путем перестановки членов условно сходящегося ряда можно получить сходящийся ряд с заранее заданной суммой или расходящийся ряд (теорема Римана).Поэтому действия над рядами нельзя производить, не убедившись в их абсолютной сходимости. Для установления абсолютной сходимости используют все признаки сходимости числовых рядов с положительными членами, заменяя всюду общий член его модулем.