Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
генетика другие генные болезни.docx
Скачиваний:
81
Добавлен:
25.02.2019
Размер:
54.13 Кб
Скачать

Лизосомные болезни

Лизосомные болезни накопления – это тяжелые наследственные заболевания обмена веществ, связанные с отсутствием лизосомальных ферментов. Недостаток этих ферментов приводит к тому, что макромолекулы (сложные комплексы белков, липидов и углеводов) не расщипляются и накапливаются в лизосомах. В результате сначала нарушается работа, клетки, затем тканей, а затем всего организма. Частота заболеваний этой группой генетических болезней составляет 1:5000 новорожденных. В зависимости от самого субстрата и группы поврежденных ферментов различают: сфинголипидозы (ганглиозидоз, болезнь Крабе, болезнь Гоше, метахроматическая лейкодистрофия, , болезнь Фарбера, болезнь Фабри, , болезнь Шиндлера, болезнь Нимана-Пика); муколипидозы и гликопротеинозы (цероидный липофусциноз, болезнь Вольмана, муколипидоз маннозидоз); мукополисахаридозы (синдром Гурлера, синдром Хантера, синдром Шейе, синдром Сан-Филиппо, синдром Морото -_Лами, синдром Моркио, синдром Слая).

Диагноз лизосомного заболевания можно заподозрить на основе внешних признаков: скелетные аномалии, грубые черты лица, а также умственной отсталости, поражений внутренних органов и систем. Манифестация этих симптомов может произойти как в период новорожденности, так и в уже зрелом возрасте.

Одно из самых известных лизосомных заболеваний – болезнь Гоше. В основе лежит незаменимого фермента бета-глюкоцереброзидазы, в результате чего мембранный жир накапливается в клетках Гоша с нарушением функций внутренних органов.

Если раньше диагноз «Болезнь Гоше» считался практически приговором, то сейчас при применении заместительной ферментотерапии имиглюцеразой у больных появилась возможность достигнуть нормальной жизни. При регулярном приеме препарата размеры печени и селезенки уменьшаются практически до нормального состояния, гемограмма нормализуется, изчезают боли в костях.

 Дезоксирибонуклеи́новая кислота́ (ДНК) макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализациюгенетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР). Номенклатура азотистых оснований, нуклеозидов и мононуклеотидов молекулы ДНК представлена в таблице.

ДНК имеет форму спирали, в которой основания разных цепей связаны между собой водородными связями. Цепи ДНК способны разделяться с помощью специальных ферментов и служить матрицами при синтезе дочерних молекул. Важнейшее свойство ДНК — комплементарность ее цепей. Это означает, что против аденина в одной из цепей всегда стоит тимин в другой цепи, гуанин всегда соединен с цитозином. Комплементарные пары аденин и тимин соединены двумя водородными связями, а гуанин с цитозином тремя водородными связями.

Помимо водородных связей между основаниями разных цепей стабильность двойной спирали ДНК обеспечивают гликозидные связи между азотистыми основаниями и остатками дезоксирибозы, а также фосфодиэфирные связи между двумя соседними остатками дезоксирибозы.

ДНК может существовать в виде нескольких форм, различающихся числом пар оснований на виток, утлом вращения между соседними парами оснований, расстоянием между парами оснований и диаметром спирали. В условиях in vivo наиболее частой является праюсторонняя В-форма, в которой одна цепь повернута вокруг другой по часовой стрелке. Имеется также и левосторонняя Z-форма.

Какие же из перечисленных выше структурных и функциональных особенностей молекулы ДНК позволяют ей хранить и передавать наследственную информации от клетки к клетке, от поколения к поколению, обеспечивать новые комбинации признаков у потомства?

1. Стабильность. Она обеспечивается водородными, гликозидными и фосфодиэфирными связями, а также механизмом репарации спонтанных и индуцированных повреждений;

2. Способность к репликации. Благодаря этому механизму в соматических клетках сохраняется диплоидное число хромосом. Схематично псе перечисленные особенности ДНК как генетической молекулы изображены на рисунке.

3. Наличие генетического кода. Последовательность оснований в ДНК с помощью процессов транскрипции и трансляции преобразуется в последовательность аминокислот в полипептидной цепи; 4. Способность к генетической рекомбинации. Благодаря этому механизму образуются новые сочетания сцепленных генов.

Передача генетической информации в клетке основана на матричных процессах (репликации, транскрипции, трансляции). Синтез дочерней цепи (репликация) молекулы ДНК происходит по матрице одной из двух родительских цепей с образованием новой двухиепочечной молекулы ДНК. Синтез молекулы РНК совершается в процессе транскрипции ДНК по матрице одной из двух цепей ДНК. Такая матричная (информационная) РНК может рассматриваться как посредник между ДНК и белком. Далее при синтезе белков генетическая информация, закодированная в последовательности триплетов азотистых оснований (канонов), транслируется в аминокислотную последовательность полипептидных цепей. Остановимся кратко на каждом из этих процессов,

Репликация. Во время репликации происходит расхождение двух цепей ДНК, и каждая из них служит матрицей для синтеза дочерней цепи. Такой способ репликации называется полуконсервативным. При этом дезоксирибонуклеотиды встраиваются в дочернюю цепь согласно правилу комплементарности азотистых оснований (А — Т, G — С). Вновь образованная молекула состоит из одной родительской и одной дочерней цепи ДНК. Образование дочерних хромосом происходит на стадии синтеза (S) в интерфазе между митотическими делениями и перед первым делением мейоза, В анафазе удвоенные хромосомы расходятся по дочерним клеткам. Таким образом, без процесса репликации невозможно сохранение диплоидного числа хромосом в соматических клетках и образование гаплоидного набора хромосом в половых клетках после двух делений мейоза. Однако при делении клеток происходит не только сохранение числа хромосом, но и воспроизведение последовательности азотистых оснований в молекулах ДНК, основанное на комплементарностb пар оснований родительской и дочерней цепей ДНК.

Цепи отделяются друг от друга, и каждая служит матрицей для построения комплементарной цепи. В результате синтезируются две молекулы, у каждой из которых одна цепь старая и одна новая. Такой способ репликации ДНК называют полуконсервативным.