
- •§ 20.4. Магнитные пускатели
- •§ 20.5. Автоматические выключатели
- •Глава 21
- •§ 21.1. Назначение электромагнитных исполнительных устройств
- •§ 21.2. Классификация электромагнитов
- •§ 21.3. Порядок проектного расчета электромагнита
- •§ 21.4. Особенности расчета электромагнитов переменного тока
- •§ 21.5. Электромагнитные муфты
- •1. Принцип действия электромагнита.
- •2. Каков порядок расчета электромагнита?
- •3. Как работает электромагнитная муфта?
- •Раздел IV
- •Глава 22
- •§ 22.1. Физические основы работы магнитных усилителей
- •§ 22.2. Принцип действия магнитного усилителя
- •§ 22.3. Основные схемы и параметры нереверсивных магнитных усилителей
- •§ 22.4. Основные характеристики магнитных усилителей
- •§ 22.5. Теория идеального магнитного усилителя
- •§ 22.6, Инерционность идеального магнитного усилителя
- •1. Принцип действия магнитного усилителя.
- •2. Почему в магнитном усилителе выходной сигнал не влияет на входной?
- •3. Какими параметрами характеризуется магнитный усилитель?
- •Глава 23
- •§ 23.1. Назначение и способы введения обратной связи
- •§ 23.2. Однотактный магнитный усилитель с внешней обратной связью
- •§ 23.3. Инерционность магнитного усилителя с обратной связью
- •§ 23.4. Регулировка коэффициента обратной связи
- •§ 23.5. Характеристики реального магнитного усилителя "' с обратной связью ' * ' *
- •§ 23.6. Графическое построение статической характеристики магнитного усилителя с обратной связью
- •§ 23.7. Магнитные усилители с внутренней обратной связью
- •1. Зачем в магнитных усилителях используется обратная связь?
- •2. В чем разница между внешней и внутренней обратной связью?
- •3. Как регулируется коэффициент обратной связи?
- •Глава 24
- •§ 24.1. Статическая характеристика реверсивного (двухтактного) магнитного усилителя
- •§ 24.2. Усилители с выходным переменным током
- •§ 24.3. Реверсивные магнитные усилители с выходным постоянным током
- •§ 24.4. Обратная связь в реверсивных магнитных усилителях
- •§ 24.5. Основы расчета магнитных усилителей
- •1. Зачем нужна обмотка смещения?
- •2. Какой вид имеет статическая характеристика реверсивного магнитного усилителя?
- •3. Какой порядок расчета магнитного усилителя?
- •Глава 25
- •§ 25.1. Многокаскадный магнитный усилитель
- •§ 25.3. Операционные магнитные усилители
- •§ 25.4. Трехфазные магнитные усилители
- •1. Перечислите основные типы магнитных усилителей специального назначения.
- •2. Что требуется для повышения быстродействия магнитного усилителя?
- •3. Для выполнения каких функций нужны операционные усилители?
- •Глава 26
- •§ 26.1. Назначение магнитных модуляторов
- •§ 26.2. Магнитные модуляторы с выходным переменным током основной частоты
- •§ 26,3. Магнитные модуляторы с выходным переменным током удвоенной частоты
- •§ 26.4. Магнитные модуляторы с выходным импульсным сигналом
- •§ 26,5. Магнитомодуляционные датчики магнитных величин
- •§ 26.6. Назначение и принцип действия бесконтактных магнитных реле
- •§ 26.7. Характеристики и схемы бесконтактных магнитных реле
- •§ 26.8. Основы расчета и конструирования бесконтактных магнитных реле
- •1. Зачем нужны магнитные модуляторы?
- •2. Что измеряют магнитомодуляционные датчики?
- •3. Принцип действия магнитного реле.
- •Раздел V
- •Глава 27
- •§ 27.1. Достоинства дискретных систем
- •§ 27.2. Электронные коммутаторы
- •§ 27.3. Элементы цифровой техники
- •§ 27.4. Элементы памяти для цифровых систем
- •§ 27.5. Счетчики импульсов
- •§ 27.6. Мультиплексор и демультиплексор
- •Глава 28
- •§ 28.1. Аналого-цифровые преобразователи
- •§ 28.2. Цифро-аналоговые преобразователи
- •§ 28.3. Индикаторные устройства
- •Глава 29
- •§ 29.1. Назначение корректирующих элементов
- •§ 29.2. Операционный усилитель в функциональных схемах
- •1. Зачем нужны корректирующие элементы?
- •2. Для выполнения каких преобразований нужны операционные усилители?
- •3. Как работает компаратор?
§ 22.2. Принцип действия магнитного усилителя
Для изучения принципа действия магнитного усилителя рассмотрим его простейшую схему (рис. 22.4, а, б), состоящую из двух обмоток. Одна обмотка — рабочая (или обмотка переменного тока) с числом
витков wp, другая — обмотка управления (или управляющая) с числом витков wr Обе обмотки размещены на общем ферромагнитном замкнутом сердечнике. На обмотку управления подается входной сигнал в виде напряжения постоянного тока Ц, или тока /у, подлежащего усилению. Последовательно с рабочей обмоткой включена нагрузка Лц, напряжение на которой UH является выходным сигналом усилителя. Цепь рабочей обмотки получает питание от источника напряжения переменного тока (например, промышленной частоты 50 Гц). Сердечник одновременно намагничивается двумя полями: постоянным, созданным током /у, протекающим в обмотке шу, и переменным, созданным током /н, протекающим в обмотке wp. Если принять сопротивление рабочей обмотки чисто индуктивным Хр, а форму тока — близкой к синусоидальной, то ток в нагрузке
Напряженность магнитного поля в сердечнике создается именно током /н. Так как мы приняли допущение о синусоидальности тока, то и напряженность будет изменяться по синусоидальному закону. Амплитудное значение напряженности
Из формул (22.4) и (22.6) следует, что при неизменном напряжении сети Uc ток в цепи нагрузки /н может быть увеличен только за счет уменьшения магнитной проницаемости цд для переменной составляющей магнитного поля, так как остальные параметры (со; шр; s; /c; ц0) не изменяются. Уменьшение магнитной проницаемости |1Д достигается за счет увеличения постоянного подмагничивающего
поля в сердечнике, создаваемого управляющим током Ту в соответствии с уравнением (22.8).
При изменении тока нагрузки /н будет изменяться и падение напряжения £/н на нагрузке Лн, т. е. выходной сигнал. Мощность, выделяемая в нагрузке, может во много раз превышать мощность, расходуемую в управляющей обмотке, т. е. схема обладает усилительными свойствами и ее можно рассматривать как простейший магнитный усилитель. Такой усилитель называют еще дроссельным," поскольку изменение тока в нагрузке обеспечивается за счет изменения ин-
дуктивности рабочей обмотки, т. е. сопротивления дросселя — катушки с сердечником (рис. 22.6).
Рассмотренная схема (по рис. 22.4) имеет серьезные недостатки и крайне редко применяется на практике. Дело в том, что замыкающийся по сердечнику переменный магнитный поток наводит в обмотке управления (как во вторичной обмотке трансформатора) переменную ЭДС. Поэтому выходной сигнал может влиять на входной. А усилители должны обладать однонаправленностью действия: только от входа к выходу. Для уменьшения значения переменного тока, протекающего по цепи управления под влиянием наведенной ЭДС, последовательно с управляющей обмоткой дау включают большую индуктивность Ly. Однако при этом увеличивается инерционность усилителя: при быстрых изменениях входного напряжения ток управления изменяется медленно. Кроме того, увеличивается расход материала (так как необходим сердечник и для дросселя), возрастают габариты и вес усилителя. Другим недостатком рассмотренной схемы является то, что форма тока в нагрузке существенно отличается от синусоиды, что видно по кривой 2' на рис. 22.3.
Для уничтожения ЭДС, наводимой в обмотке управления, используются схемы магнитных усилителей с двумя одинаковыми сердечниками (рис. 22.7, а, б). Такие схемы составлены из схем по рис. 22.4 как из типовых элементов, что особенно хорошо видно на рис. 22.7, а. Рабочая обмотка шр и обмотка управления wy имеют по две секции — по одной на каждом сердечнике. Секции управляющей