
- •1.1. Ядерні сили та їх властивості. Ядерні реакції поділу і синтезу. Ланцюгова ядерна реакція. Ядерна енергетика та екологія.
- •1.2. Вивчення елементарних частинок та їх властивостей в школі.
- •1.3. Під яким кутом до поверхні Землі треба кинути тіло, щоб максимальна висота його підняття була рівна дальності польоту?
- •2.1. Радіоактивність, закон радіоактивного розподілу. Природа , , випромінювання. Правила зміщення.
- •2.2. Методика розв’язання задач з динаміки.
- •3.1. Перший принцип термодинаміки і його застосування. Оборотні ті необоротні процеси. Основні термодинамічні процеси.
- •3.2. Формування поняття про внутрішню енергію та способи її зміни.
- •4.1. Дослід Резерфорда і планетарна модель атома. Постулати Бора. Атом водню.
- •4.2. Методика введення поняття про електричний заряд в школі.
- •5.2.Методика введення фізичних величин в шкільному курсі фізики
- •5.3. До стелі ліфта, що рухається вертикально вгору з прискоренням 0,98 м/с2 , прикріплено пружний динамометр, на якому висить тягарець масою 1 кг. Яку силу показує стрілка динамометра?
- •7.1. Основні положення молекулярно-кінетичної теорії(мкт). Ідеальний газ. Основне рівняння мкт. Газові закони. Рівняння стану ідеального газу.
- •9.1. Методика формувань основних понять теми «Магнітне поле»
- •9.2. Стаціонарне магнітне поле у вакуумі, його вихровий характер. Закон Біо-Савара-Лапласа. Теорема про циркуляцію вектора напруженості магнітного поля.
- •9.3. Задача
- •12.1. Простір і час в нерелятив. Фізиці. Кінематика матеріальної точки. Системи відліку. Перетворення Галілея, їх кінематичні наслідки.
- •12.2. Формування основних понять кінематики в школі
- •2. Шлях і переміщення.
- •7. Рівномірний рух по колу.
- •Другий принцип термодинаміки. Теплові машини. Третій принцип термодинаміки. Ентропія: фіз. І стат. Зміст.
- •Методика вивчення теми: «Елементи теорії відносності»
- •14.2.Методика вивчення «Електричного струму в різних середовищах».
- •16.2 Вивчення теми «Світлові явища» в школі.
- •17.1 Поляризація світла. Поляризація при відбиванні та заломлені світла. Закон Брюстера та Малюса. Поляризаційні приклади та їх застосування.
- •17.3 Вісім однакових краплин, які мають однакові заряди, зливаються в одну велику краплину. Як зміниться її потенціал відносно потенціалу окремої краплини?
- •18.1 Робота, потужність, кінетична і потенціальна енергії. Збереження механічної енергії.
- •18.2. Лабораторна робота визначення теплоємності .
- •19.1. Геометрична оптика . Закони геометричної оптики. Тонкі лінзи . Фокусні лінзи.
- •19.2. Методика навчання явища електромагнітної індукції в 11 кл.
- •20.2.Формування основних понять обертального руху в школі.
- •22.2. Вивчення законів динаміки в школі.
- •23.1. Механічні коливання в ідеальних і реальних системах. Характеристики коливань і їх зв'язок з параметрами системи. Резонанс.
- •23.2. Методика формування основних понять коливального руху.
- •24.2. Вивчення алгебраїчних станів в шкф.
1.2. Вивчення елементарних частинок та їх властивостей в школі.
Тему доцільно вивчати в такій послідовності:
1.1) Елементарні частинки, їх особливості. Величини, що характеризують ці частинки. Класифікація.
1.2) Античастинки
2) Взаємодії між частинками . Взаємоперетворюваність частинок.
Урок проводиться у вигляді семінару, домашнім завданням до якого є поділившись на групи підготувати відомості про окремі частинки та їх характеристики. На початку уроку вчитель робить вступну бесіду про історію відкриттів ел.частинок, після якої учні кожна група доповідає. І поступово заповнюється таблиця (Назви частинок та їх властивості (маса, спін, електричний заряд, час життя)).
Здавна вчені намагалися знайти найменші «цеглинки» матерії, які б допомогли зрозуміти ієрархічну структуру будови речовини. Спочатку, у давніх греків, це були атоми як неподільні частинки, з яких складаються, всі тіла (Демокрит, Епікур). На початку XIX ст. це поняття було конкретизоване в дослідженнях хіміків і набуло значення найдрібнішої частинки речовини, що визначає її хімічні властивості.
Наприкінці XIX ст., після відкриття електрона (Дж. Томсон) і ґрунтовного дослідження явища радіоактивності , вчені засумнівалися в елементарності атома і припустили, що він має складну будову. На початку XX ст. Е.Резерфорд підтвердив це експериментально і запропонував ядерну модель атома, згідно з якою ядро — теж складне утворення. У 1919 р. він відкрив нуклон, що має позитивний заряд, незваний протоном. Інша частинка — нейтрон, входить до складу ядра;
Для пояснення обмінного характеру сильної взаємодії нуклонів у ядрі X. Юкава у 1935 р. висловив гіпотезу про існування пі-мезонів, які були виявлені в космічних променях у 1947 р. Раніше, у 1932 р. у складі космічних променів була виявлена перша античастинка — позитрон . За сучасними уявленнями це не просто первинні неподільні частинки, що входять до складу матеріального світу, а специфічні об'єкти, яким, окрім іншого, властивий особливий вид фундаментальної взаємодії — так звана слабка взаємодія.
За інтенсивністю слабка взаємодія в багато разів менша за сильну і навіть електромагнітну взаємодії (приблизно в 1014 разів). Проте вона значно більша за гравітаційну взаємодію, оскільки маси елементарних частинок надто малі і радіус їхньої взаємодії становить лише 10-18 м.
Усі елементарні частинки характеризуються малими розмірами (у більшості з них порядку 10-15 м) і незначними масами. Це зумовлює квантову специфіку їхньої поведінки — вони підлягають квантовим закономірностям і властивостям утворюватися (випромінюватися) або зникати (поглинатися) внаслідок взаємодії.
Нині відомо понад 350 елементарних частинок і відкриття їх триває
Загальними характеристиками елементарних частинок є їхня маса т, електричний заряд q, спін s і час життя т. Окремі з них характеризуються також особливими величинами — лептонним зарядом, баріонним зарядом тощо. Як правило, всі вони визначаються у відносних одиницях, кратних певним значенням, наприклад, масі чи електричному заряду електрона, сталій Планка тощо.
Масу елементарних частинок виражають числом, кратним масі електрона; електричний заряд — в одиницях, кратних заряду електрона е; спін — кратний значенню сталої Планка h
Отже, кожна елементарна частинка має набір дискретних квантових чисел, що визначають її специфічні властивості, за якими їх можна класифікувати
Між елементарними частинками існує слабка взаємодія. Залежно від властивого їм типу взаємодій ці елементарні частинки, окрім фотона, поділяються на дві основні групи: адрони, які беруть участь в цих типах взаємодій – гравітаційній, електромагнітній, сильній і слабкій, та лептони, яким не властива сильна взаємодія.
За часом життя елементарні частинки поділяють на стабільні (фотон, електрон, протон, нейтрино, відносно стабільний нейтрон), квазістабільні (т >10-20 с), які розпадаються внаслідок електромагнітної чи слабкої взаємодії, і нестабільні (т < 10-22 с), які розпадаються внаслідок сильної взаємодії.
У фізиці існують й інші класифікації елементарних частинок. Зокрема, їх можна поділити на частинки й античастинки (електрон— позитрон, нейтрино—антинейтрино); за значенням спінового квантового числа, яке може бути цілим або напівцілим, адрони поділяють на бозони і баріони. Бозони з нульовим спіном називають мезонами. Цю класифікацію можна продовжити на основі значень різних квантових чисел.
Дослідження показали, що лептони не мають якоїсь структури, тобто справді є елементарними частинками. Водночас адрони виявили властивості, які вказують на те, що вони мають певну структуру і складаються з кількох «елементарніших» частинок. У 1964 р. вчені М. Гелл-Манн і Дж. Цвейг незалежно один від одного запропонували кваркову модель адронів. Вони вважали, що всі адрони можна будувати, комбінуючи три кварки (для баріонів) або кварк та антикварк (для мезонів). Цим трьом кваркам були присвоєні імена: u, d, s.
Згодом з'ясувалося, що побудувати все розмаїття елементарних частинок за допомогою трьох кварків не вдається, тому їх набір доповнили ще трьома — с, Ь, і t. Сукупність із шести кварків та їхніх анти-кварків дає змогу розкрити складну структуру всіх відомих на сьогодні адронів.
Отже, дослідження елементарних частинок і пояснення механізмів їх перетворення за допомогою слабкої взаємодії створило цілісне уявлення сучасної фізичної картини світу на основі чотирьох фундаментальних взаємодій. Водночас теоретичні пошуки їх об'єднання в єдину фізичну теорію, спроможну дати цілісне трактування законів фізичного світу, поки не мали успіху, хоча окремі здобутки в цьому вже є.
ЗАПИТАННЯ 1. Як у фізиці розвивалися уявлення про ієрархічну структуру речовини в пошуку її елементарних найдрібніших частинок? 2. Який тип фундаментальних взаємодій характерний для елементарних частинок? Дайте його коротку характеристику. 3. Набір яких величин визначає властивості елементарних частинок? 4. На які дві основні групи поділяють елементарні частинки? Які ще класифікації елементарних частинок можуть бути? 5. У чому полягає суть кваркової моделі елементарних частинок?