
- •Оглавление
- •Структуризация локальных сетей
- •Основная технология на рабочих местах Ethernet/FastEthernet
- •Варианты соединения узлов разделяемого сегмента 10 Мбит/сек
- •Основные ограничения при построении малых сетей на коаксиальном кабеле
- •Сегментация сети:
- •С мостами
- •С коммутаторами
- •На стеке сегментирующих хабов
- •Микросегментация к отдельному порту коммутатора
- •Иерархическая сеть здания на коммутаторах
- •Кольцевая магистраль на базе fddi/Ethernet
- •Звездообразная магистраль на коммутаторах. Резервирование и дублирование магистралей
- •Маршрутизатор
- •Брандмауэр (firewall)
- •Маршрутизаторы как средство объединения логических сетей
- •Объединение подсетей «одноруким» маршрутизатором
- •Планирование корпоративных кс
- •В чем состоит планирование сети
- •При стратегическом планировании сети, какие решения нужно принять по четырем группам вопросов
- •Многослойное представление корпоративной сети
- •Стратегические проблемы построения транспортной системы корпоративной сети
- •Классификация сетей по радиусу действия
- •Ресурсы корпоративной сети
- •Определение типа сети. Четыре основных сетевых характеристик
- •Четыре группы устройств, играющих основную роль при объединении сетей
- •Причины, обусловившие появление локальных и глобальных сетей
- •Интеграция локальных и глобальных сетей
- •Передача данных между локальными и глобальными сетями
- •Введение в проектирование сетей
- •Взаимодействие локальных и глобальных сетей
- •Эталонная модель взаимодействия открытых систем osi. Семиуровневая модель взаимодействия osi.
- •Взаимодействие между стеками протоколов
- •Применение модели osi
- •Типы сетей
- •Методы передачи данных в локальных сетях
- •Глобальные сетевые коммуникации
- •Методы передачи данных в глобальных сетях
- •Isdn (Цифровая сеть связи с комплексными услугами)
- •Методы передачи физического сигнала
- •Типы коммуникационной среды
- •Высокоскоростные технологии с использованием витой пары и оптоволоконного волокна
- •Беспроводные технологии
- •Сетевое передающее оборудование
- •Сетевые адаптеры
- •Повторители
- •Модули множественного доступа
- •Концентраторы
- •Маршрутизаторы
- •Мосты –маршрутизаторы
- •Коммутаторы
- •Мультиплексоры
- •Серверы доступа
- •Протоколы локальных сетей и их применение в сетевых ос
- •Протоколы локальных сетей и их применение в сетевых ос
- •Протокол tcp/ip и различные серверные системы
- •Повышение производительности локальных сетей
- •Прошлое, настоящее и будущее протокола tcp
- •Функционирование протокола tcp
- •Функционирование протокола ip
- •Ip как протокол без установления соединения
- •Сравнение архитектуры стека tcp/ip и эталонной модели osi
- •Методы передачи информации в глобальных сетях
- •Методы передачи информации в сетях х.25
- •Соединения х.25
- •Структура фрейма х.25
- •Использование сетей х.25
- •Сети с ретрансляцией кадров (framerelay)
- •Технология атм
- •Компоненты сетей атм
- •Характеристика сетей атм
- •Области применения атм
- •Применение технологии атм при построении локальных сетей
- •Применение технологии атм при построении глобальных сетей
- •Технологии беспроводных сетей
- •Современные технологии беспроводных сетей
- •Технологии радиосетей
- •Сетевые технологии с использованием инфракрасного излучения
- •Направленный луч
- •Ненаправленная передача
- •Отражение
- •Микроволновые сетевые технологии
- •Беспроводные сети на базе низкоорбитальных спутников Земли
- •Совместная передача речи, видеоизображений и данных
- •Технология передачи изображений
- •Технологии создания аудиофайлов
- •Передача мультимедийной информации в локальных и глобальных сетях
- •Проектирование глобальных сетей, поддерживающих мультимедийные приложения
- •Базовые принципы проектирования локальных и глобальных сетей
- •Факторы, влияющие на структуру локальных и глобальных сетей
- •Анализ существующей топологии и ресурсов
- •Принципы проектирования локальных сетей
- •Принципы проектирования глобальных сетей
-
Сравнение архитектуры стека tcp/ip и эталонной модели osi
Как показано на рис. 6.11, компоненты стека TCP/IP, о которых рассказывалось в этой главе, соответствуют уровням эталонной модели OSI. По мере развития стека TCP/IP его компоненты все в большей степени следуют модели OSI. Например, на Физическом и Канальном уровнях стек TCP/IP совместим с сетями Ethernet, Token Ring, FDDI и ATM, а также с шинными сетями с передачей маркера (tokenbus). На Физическом уровне стек TCP/IP поддерживает коаксиал, витую пару и оптоволокно, а также беспроводные коммуникации. Кроме того, на Канальном уровне стек совместим со стандартом IEEE 802.2 на управление логическим каналом и МАС-адресацию.
Эквивалентом Сетевого уровня в стеке TCP/IP является протокол IP. Следующим уровнем совместимости служит Транспортный уровень, на этом уровне могут работать оба протокола – TCP и UDP. Верхние уровни модели OSI представляются прикладными протоколами TCP/IP. Например, протокол Telnet функционирует на уровне, эквивалентном Сеансовому, а протоколы SMTP и FTP работают на уровнях, аналогичных Представительскому и Прикладному уровням OSI.
Нужно заметить, что по мере развития протокола TCP/IP некоторые его компоненты стали в большей степени соответствовать эталонной модели OSI.
-
Методы передачи информации в глобальных сетях
-
Методы передачи информации в сетях х.25
-
Пакеты данных в сетях Х.25 могут передаваться с помощью одного из трех методов:
-
по коммутируемым виртуальным каналам,
-
по постоянным виртуальным каналам,
-
с помощью датаграмм.
-
Коммутируемый виртуальный канал (switchedvirtualcircuit, SVC) представляет собой двунаправленный канал, установленный между узлами через некоторый коммутатор Х.25.
Канал -это логическое соединение, которое устанавливается только на время передачи данных. По завершении передачи канал может стать доступным для других узлов.
-
Постоянный виртуальный канал (permanentvirtualcircuit, PVC) - это логический коммуникационный канал, поддерживаемый постоянно. Соединение не разрывается, даже если передача данных прекращается. Оба типа виртуальных каналов (коммутируемых и постоянных) являются примерами коммутации пакетов.
-
Датаграмма (datagram) представляет собой упакованные данные, пересылаемые без установки коммуникационного канала. Датаграммы достигают точки назначения при помощи механизма коммутации сообщений. Пакеты адресуются некоторому получателю и могут поступать к нему не одновременно (в зависимости от выбранного маршрута).
Датаграммы не применяются в международных сетях, однако включены в спецификации ITU-T для Интернета. Интернет-датаграммы Х.25 инкапсулируют уровень IP в пакетах Х.25, поэтому устройства сети Х.25 не "догадываются" о том, что пакеты содержат данные IP. При этом адрес IP-сети попросту переназначается адресу целевого узла Х.25.
Соединения х.25
Для осуществления коммуникаций Х.25 используются следующие устройства:
-
терминальное оборудование (DTE), представляющее собой терминал или любой хост-компьютер (от персонального до мэйнфрейма);
-
аппаратура передачи данных (DTE), являющаяся сетевым оборудованием (например, адаптером Х.25, сервером доступа или коммутатором пакетов), применяемым для подключения терминального оборудования к сети Х.25;
-
сборщик/разборщик пакетов (packetassembler/disassembler, PAD) представляющий собой некоторое устройство, преобразующее пакет в формат Х.25 и снабжающее его адресом Х.25. Также это устройство удаляет адресную информацию формата Х.25 из пакета при его доставке в целевую локальную сеть. Программное обеспечение PAD выполняет форматирование данных и обеспечивает исчерпывающую проверку на наличие ошибок.
Любое терминальное оборудование подключается к аппаратуре передачи Данных через PAD-устройство, которое имеет несколько портов, позволяющих ему устанавливать различные виртуальные каналы для каждого подключенного к нему компьютера. Терминальное оборудование передает данные PAD-устройству, которое преобразует данные в формат Х.25 и снабжает их адресной информацией, после чего посылает по каналам коммутации пакетов, которыми управляет аппаратура передачи данных. Эта аппаратура подключена к пункту коммутации пакетов (packet-switchingexchange, PSE) некоторого поставщика услуг. Пункт коммутации является коммутатором в глобальной сети Х.25, расположенным у данного поставщика услуг. Клиентская аппаратура передачи данных подключена к провайдерскому пункту коммутации пакетов при помощи высокоскоростной телекоммуникациой линии, такой как линия Т-1. После этого пункт коммутации пакетов перенаправляет пакет формата Х.25 другому коммутатору глобальной сети Х.25 или в целевую сеть.
Некоторые сетевые операционные системы (такие как Windows 2000 Professional и Server или Windows XP) можно настроить на непосредственное подключение к сети Х.25, для чего в компьютере устанавливается интеллектуальная карта Х.25 или адаптер PAD, подключаемый к РАО-устройству сети Х.25. Интеллектуальная карта (смарт-карта, smartcard) по размеру почти равна кредитной карточке и может вставляться в компьютер. Достоинством смарт-карты является то, что она имеет цифровую подпись, ключи доступа, доступ с применением пароля и персональный идентификационный номер (PIN) для управления процессами входа в сеть и доступа к файлам и данным.
Смарт-карта является важным средством, обеспечивающим защиту удаленного доступа (такого, как через сети Х.25). Например, после того как вы согласно инструкциям производителя установите смарт-карту на сервер Windows 2000, можно создать подключение к частной сети Х.25. В практических заданиях 7-1 и 7-2 рассказывается о том, как настроить системы Windows 2000 или Windows XP для удаленного подключения к глобальной сети Х.25.
Следующие четыре протокола особенно важны для работы сети Х.25:
- X.3 — определяет методы, с помощью которых PAD-устройство преобразует передаваемый пакет в формат Х.25 и извлекает информацию стандарта Х.25 из пакета, доставленного в целевую сеть;
- Х.20 — определяет начало и окончание коммуникаций между терминальным оборудованием и аппаратурой передачи данных;
- Х.28 - описывает интерфейс между терминальным оборудованием и РАО-устройством;
- Х.29 — определяет способы передачи управляющей информации между терминальным оборудованием и РАО-устройством, а также формат, в котором эта информация пересылается.
Данная технология коммутации пакетов предусматривает передачу сообщений с использованием промежуточного хранения. Терминальное оборудование (DTE) упаковывает сообщения, содержащие данные, в пакеты и передает их РАО-устройству. РАО-устройство может по одному кабелю пересылать данные от нескольких терминальных устройств к узлу коммутации пакетов (ОСЕ). Аппаратура ОСЕ представляет собой коммутатор, физически связанный с несколькими другими DCE-устройствами. В сети Х.25 коммутатор ОСЕ может передавать данные по нескольким логическим каналам, образованным с помощью протокола Х.25. Этот коммутатор принимает переданные пакеты и хранит их в буфере до тех пор, пока не освободится нужный передающий канал. Затем пакеты перенаправляются в точку назначения, где другой коммутатор ОСЕ передает пакеты РАО-устройству, которое разбирает пакеты и возвращает их в исходный вид. Поскольку сеть Х.25 поддерживает множество каналов, несколько терминальных устройств может одновременно работать на передачу. Коммутатор последовательно переключается с одного канала на другой, передавая данные от каждого терминального устройства.
Сети Х.25 не были предназначены для взаимодействия с другими типами сетей, однако необходимость в этом появилась после того, как были созданы Другие глобальные сети. Союз ITU-Т разработал протокол Х.75 (также называемый шлюзовым протоколом) для связи сетей Х.25 с другими сетями коммутации пакетов (например, с обсуждаемыми ниже сетями framerelay). Еще один протокол, Х.121, обеспечивает единую адресацию в тех случаях, когда глобальная сеть Х.25 подключается к другой глобальной сети. Этот протокол предусматривает методы адресации для коммутаторов, регионов и стран.