
- •2.Автокорреляция случайного возмущения. Причины. Последствия.
- •4.Автокорреляция. Методы устранения автокорреляции
- •5.Алгоритм проверки адекватности парной регрессионной модели
- •6.Алгоритм проверки значимости регрессора в парной регрессионной модели
- •7.Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •8.Выбор типа математической функции при построении уравнения регрессии
- •9 Выведите формулы вычисления коэффициентов модели парной регрессии
- •10.Выведите формулы вычисления параметров модели парной регрессии
- •11.Гетероскедастичность - понятие, проявление и меры устранения.
- •12.Гетероскедастичность случайного возмущения. Причины. Последствия. Тест gq.
- •13.Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •21.Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •22.Интервальная оценка параметров уравнения парной регрессии
- •23.Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •24.Ковариация, коэффициент корреляции и индекс детерминации
- •25.Количественные характеристики взаимосвязи пары случайных переменных.
- •26. Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •28. Коэффициент корреляции и индекс детерминации в регрессионной модели.
- •29. Линейная модель множественной регрессии
- •30. Метод Монте-Карло, его применение в эконометрике
- •31. Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •32. Модели с бинарными (фиктивными) переменными.
- •33. Моделирование тенденции временных рядов (аналитическое выравнивание)
- •34. Мультиколлинеарность факторов – понятие, проявление и меры устранения
- •35. Назначение теста Голдфелда-Квандта, этапы его проведения.
- •36. Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •37.Нелинейная регрессия (линеаризация, оценка параметров)
- •38.Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •39.Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •40.Отражение в модели влияния неучтённых факторов и времени.
- •42.Оценка адекватности полученной эконометрической модели (см. 5)
- •43.Оценка коэффициентов модели Самуэльсона-Хикса
- •44.Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •45. Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •46.Оценка параметров эконометрической модели
- •47.Оценка статистической значимости коэффициентов модели множественной регрессии. (см. 6)
- •48.Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных
- •49.Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •50.Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •51.Понятие гомоскедастичности и гетероскедастичности случайных возмущений, их графическая интерпретация.
- •52.Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •53.Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •54.Предпосылки метода наименьших квадратов
- •55.Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •56.Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •57.Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •58 Принципы спецификации эконометрических моделей и их формы
- •59.Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности.
- •60.Проверка качества эконометрической модели См.5
- •61.Прогнозирование экономических переменных. Проверка адекватности модели. См.5
- •62 Простейшие модели временных рядов. Их свойства
- •63.Регрессионные модели с фиктивными переменными.
- •64.Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •65.Свойства дисперсии случайной переменной
- •66.Случайные переменные и их характеристики.
- •67.Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •68 Составление спецификации модели временного ряда
- •69.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •70 Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений
- •71.Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •72.Статистические свойства оценок параметров парной регрессионной модели.
- •73.Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •74.Суть метода наименьших квадратов. Его графическое пояснение
- •75.Схема Гаусса – Маркова.
- •76.Схема построения эконометрической модели.
- •77.Теорема Гаусса – Маркова.
- •78.Тест Дарбина – Уотсона, последовательность его выполнения.
- •79.Тест Стьюдента.
- •80. Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •81. Устранение автокорреляции в парной регрессии. (см. 4)
- •82. Функция регрессии как оптимальный прогноз.
- •83. Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •84. Эконометрика, её задача и метод.
- •85. Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •87. Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •88. Этапы построения эконометрических моделей
68 Составление спецификации модели временного ряда
Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.
Каждый уровень временного ряда формируется из трендовой (T), циклической (S) и случайной (Е) компонент. Модели, в которых временной ряд представлен как сумма перечисленных компонент, - аддитивные модели, как произведение -мультипликативные модели временного ряда. Аддитивная модель имеет вид: Y = Т + S + Е; мультипликативная модель: Y=T* S • Е, где Т- тренд, S- сезонная составляющая, Е – случайная составляющая .
Построение модели включает следующие шаги:
-
выравнивание исходного ряда методом скользящей средней;
2) расчет значений сезонной компоненты S;
3) устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (Т + Е) или в мультипликативной (Т * Е) модели;
4) аналитическое выравнивание уровней
(Т + Е) или (Т * Е) и расчет значений Т с использованием полученного уравнения тренда;
5) расчет полученных по модели значений
(T + S) или (Т * S);
6) расчет абсолютных и/или относительных ошибок.
Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравниванием временного ряда.
Параметры трендов определяются обычным МНК, в качестве независимой переменной выступает время t = 1, 2, ..., п, а в качестве зависимой переменной - фактические уровни временного ряда уt.
Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации R2.
69.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
В моделях, нелинейных по параметрам, например степенных или показательных, непосредственное применение МНК для их оценки невозможно, так как необходимым условием применимости МНК является линейность по коэффициентам уравнения регрессии. В данном случае преобразованием, которое приводит уравнение регрессии к линейному виду, является логарифмирование.
Логарифмические модели. Степенные зависимости между переменными широко распространены в практике эконометрического моделирования социально-экономических процессов. Рассмотрим уравнение парной регрессии вида
Y = AXb где А и b— параметры модели.
Линеаризуем:
прологарифмируем обе части данного уравнения: ln(Y)=ln(A) + b*ln(X) = a+ b*ln(X), где а= ln(A) (*)
Спецификация, соответствующая (*) называется двойной логарифмической моделью:
ln(Y)= a+ b*ln(X)+u,
поскольку и эндогенная переменная, и регрессор используются в логарифмической форме.
Введем обозначения: Y*=ln(Y), X*=ln(X)
Y*=a+b*X+u
Получаем спецификацию линейной модели, к которой при соответствующем включении случайного возмущения применим МНК.
В моделях, нелинейных
по оцениваемым параметрам, но приводимых
к линейному виду, МНК применяется к
преобразованным уравнениям. Если в
линейной модели и моделях, нелинейных
по переменным, при оценке параметров
исходят из критерия
min,
то в моделях, нелинейных по оцениваемым
параметрам, требование МНК применяется
не к исходным данным результативного
признака, а к их преобразованным
величинам, т. е.ln
y,
1/y.
Так, в
степенной функции
МНК применяется к преобразованному
уравнению lny
= lnα
+ β ln
x
ln
ε. Это значит, что оценка параметров
основывается на минимизации суммы
квадратов отклонений в логарифмах.
Соответственно если в линейных моделях
то в моделях, нелинейных по оцениваемым
параметрам,
.
Вследствие этого оценка параметров
оказываются несколько смещенной.
Пусть получена МНК-оценка моделиY*=a+b*X+u:
y*=ā + bx+u
(Sā) (Sb) (Su)
Коэффициенты исходной модели и их стандартные ошибки вычисляются с учетом замены по формулам:
А^=exp(ā)
SĀ= А^*Sā
Se, Sb̄, b̄ - такие же
Нелинейный МНК:
В общем случае оценка нелинейных по параметрам уравнений выполняется с помощью так называемого нелинейного метода наименьших квадратов (НМНК).
Обозначим нелинейное по параметрам уравнение регрессии f(X, ß) (X— матрица рсгрсссоров,ß — вектор параметров). Параметры уравнений в данном методе подбираются таким образом, чтобы максимально приблизить кривую f(X, ß) к результатам
наблюдений эндогенной переменной Y. Таким образом, здесь, как и в обычном
МНК, минимизируется сумма квадратов отклонений:
F=2
(**)
Если продифференцировать F по параметрам и приравнять производные нулю, то получим нелинейную систему нормальных уравнений. В случае линейного уравнения регрессии нормальные уравнения представляли собой систему линейных уравнений, решение которой не составляло труда.
Нелинейный метод наименьших квадратов сводится к задаче минимизации функции (**) нескольких переменных ß=(ß1,…,ßn)