Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elektrichestvo_i_magnetizm.docx
Скачиваний:
13
Добавлен:
24.12.2018
Размер:
4.02 Mб
Скачать

8. Основные группы медицинских электронных приборов и аппаратов. Особенности сигналов, обрабатываемых медицинской электронной аппаратурой и связанные с ними требования к медицинской электронике.

Медицинскую электронную аппаратуру можно разделить на два класса: медицинские приборы и медицинские аппараты.

Медицинский прибор -- техническое устройство, предназначенное для диагностических или лечебных измерений (медицинский термометр, электрокардиограф и др.).

Медицинский аппарат -- техническое устройство, позволяющее создавать энергетическое воздействие (часто дозированное) терапевтического, хирургического или бактерицидного свойства (аппарат УВЧ терапии, аппарат искусственной почки и др.), а также обеспечить сохранение определенного состава некоторых субстанций.

Выделены следующие основные группы приборов и аппаратов, используемые для медико-биологических целей.

-- Устройство для получения (съема), передачи и регистрации медико-биологической информации. С физической точки зрения эти устройства являются генераторами различных электрических сигналов.

--Кибернетические электронные устройства. В ряде случаев электронное устройство может совмещать в себе различные группы приборов и аппаратов.

В большинстве приборов электрический сигнал, поступающий от преобразователя, должен пройти обработку, прежде чем он примет форму, удобную для дальнейшего его использования в устройстве отображения. Такая модификация или обработка сигнала выполняется в специальных блоках прибора — блоках обработки сигналов.

Электрический сигнал, получаемый от большинства преобразователей, мал, поэтому его следует усилить. Усиление осуществляется с помощью электронных приборов, т. е. приборов, в которых осуществляется управление электронными потоками.

9.Генераторы синусоидальных колебаний

Данная группа генераторов предназначена для получения колебаний синусоидальной формы требуемой частоты. Их работа основана на принципе самовозбуждения усилителя ,охваченного положительной обратной связью (рис.1.1). Коэффициент усиления и коэффициент передачи звена обратной связи приняты комплексными, т.е. учитывается их зависимость от частоты. При этом входным сигналом для усилителя в схеме рис.1.1 является часть его выходного напряжения передаваемого звеном обратной связи

1.1 – Структурная схема генератора

Для возбуждения колебаний в системе рис.1.1 необходимо выполнение двух условий. Первое состоит в обеспечении баланса фаз, которое заключается в том, чтобы фазовые сдвиги, создаваемые усилителем () и звеном обратной связи () , в сумме должны быть кратными :

Второе условие , необходимое для возникновения генерации, это условие баланса амплитуд , которое вытекает из общей формулы для усилителя, охваченного положительной обратной

связью:

При выполнении баланса амплитуд усилитель компенсирует ослабление сигнала, создаваемое звеном обратной связи, и в схеме возникают устойчивые автоколебания. Для получения синусоидальной формы выходного сигнала используют несколько способов построения схем.

10.Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры — радиоприёмника, магнитофона, измерительного прибора и т. д.

Биполярным транзистором (БТ) называется трехэлектродный полупроводниковый прибор с двумя взаимодействующими p-n-переходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности. Слово «биполярный» означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко – на расстоянии, меньшем диффузионной длины. Два p-n-перехода образуются в результате чередования областей с разным типом электропроводности. Крайние области называются эмиттер и коллектор, а средняя – база. Условное изображение структуры p-n-p и условное графическое обозначение на принципиальных схемах показаны на рис. 1. · Э - эмиттер,· Б - база,· К - коллектор,· ЭП - эмиттерный переход,· КП - коллекторный переходКП - коллекторный переход

Принцип работы транзисторов обоих типов одинаков, различие заключается лишь в том, что в транзисторе n-p-n–типа через базу к коллектору движутся электроны, инжектированные эмиттером, а в транзисторе p-n-p–типа–дырки. Для этого к электродам транзистора подключают источники тока обратной полярности

В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток.Любая схема включения транзистора характеризуется двумя основными показателями:

Коэффициент усиления по току Iвых/Iвх.Входное сопротивление Rвх=Uвх/Iвх

11. Положительная и отрицательная обратная связь в усилителях. Коэффициент обратной связи. Блок-схема усилителя с обратной связью. Влияние обратной связи на амплитудно-частотную характеристику и на полосупропускания усилителя.

Если при наличии обратной связи входное напряжение uвх складывается с напряжением обратной связи uос, в результате чего на усилитель подается увеличенное напряжение u1 то такую обратную связь называют положительной.

Если после введения обратной связи напряжения u1 на входе и uвых на выходе усилителя уменьшаются, что вызывается вычитанием напряжения обратной связи из входного напряжения uвх, то такую обратную связь называют отрицательной. Влияние обратной связи на амплитудно-частотную характеристику усилителя.

Обратная связь, изменяя коэффициент усиления усилителя, изменяет его частотную, фазовую и переходную характеристики. Применительно к ООС, которая обычно используется в усилителе, различают частотно-независимую и частотно-зависимую обратные связи.

В случае частотно-независимой ООС можно получить коэффициент частотных искажений в виде

где М – коэффициент частотных искажений усилителя без обратной связи. При этом полоса частот усилителя расширяется, а коэффициент усиления усилителя, как было отмечено выше, уменьшается в глубину ООС раз.

В другом случае, частотно-зависимой ООС, можно получить желаемую АЧХ (ФЧХ и переходную характеристику), если применить глубокую ООС и зависимость β(f). Это свойство широко используется в групповых усилителях, в конструировании усилителей и устройств с заданными параметрами

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]