- •1. Основные определения
- •1.1. Основные пояснения и термины
- •1.2. Пассивные элементы схемы замещения
- •Активные элементы схемы замещения
- •1.4.Основные определения, относящиеся к схемам
- •1.5. Режимы работы электрических цепей
- •1.6. Основные законы электрических цепей
- •2. Эквивалентные преобразования схем
- •2.1.2.1. Последовательное соединение элементов электрических цепей
- •2.2. Параллельное соединение элементов электрических цепей
- •2.3.Преобразование треугольника сопротивлений в эквивалентную звезду
- •2.4.Преобразование звезды сопротивлений в эквивалентный треугольник
- •3. Анализ электрических цепей постоянного тока с одним источником энергии
- •3.1. Расчет электрических цепей постоянного тока с одним источником методом свертывания
- •3.2. Расчет электрических цепей постоянного тока с одним источником методом подобия или методом пропорциональных величин
- •4. Анализ сложных электрических цепей с несколькими источниками энергии
- •4.1. Метод непосредственного применения законов Кирхгофа
- •4.3. Метод узловых потенциалов
- •5. Нелинейные электрические цепи постоянного тока
- •5.1. Основные определения
- •5.2. Графический метод расчета нелинейных цепей постоянного тока
- •6. Электрические цепи однофазного переменного тока
- •6.1. Основные определения
- •6.2. Изображения синусоидальных функций времени в векторной форме
- •6.3. Изображение синусоидальных функций времени в комплексной форме
- •6.4. Сопротивление в цепи синусоидального тока
- •6.5. Индуктивная катушка в цепи синусоидального тока
- •6.6. Емкость в цепи синусоидального тока
- •6.7. Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •6.8. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока
- •6.9. Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора
- •6.10. Мощность в цепи синусоидального тока
- •6.11. Баланс мощностей
- •6.12. Согласованный режим работы электрической цепи. Согласование нагрузки с источником
- •7. Трехфазные цепи
- •7.1. Основные определения
- •7.2. Соединение в звезду. Схема, определения
- •7.3. Соединение в треугольник. Схема, определения
- •7.4. Расчет трехфазной цепи, соединенной звездой
- •7.5. Мощность в трехфазных цепях
- •8. Переходные процессы в линейных электрических цепях
- •8.1. Общая характеристика переходных процессов
- •8.2. Переходные процессы в цепях с одним реактивным элементом
- •8. Переходные процессы в линейных электрических цепях
- •8.3. Переходные процессы в цепях с двумя реактивными элементами
- •9. Магнитные цепи
- •9.1. Основные определения
- •9.2. Свойства ферромагнитных материалов
- •9.3. Расчет магнитных цепей
- •10. Трансформаторы
- •10.1. Конструкция трансформатора
- •10.2. Работа трансформатора в режиме холостого хода
- •10.3. Работа трансформатора под нагрузкой
- •10.4. Специальные типы трансформаторов
- •11. Электрические машины постоянного тока
- •11.1. Устройство электрической машины постоянного тока
- •11.2. Принцип действия машины постоянного тока
- •11.3. Работа электрической машины постоянного тока в режиме генератора
- •11.4. Генераторы с независимым возбуждением. Характеристики генераторов
- •11.5. Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением
- •11.6. Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •11.7. Механические характеристики электродвигателей постоянного тока
- •12. Электрические машины переменного тока
- •12.1. Вращающееся магнитное поле
- •12.2. Асинхронные двигатели. Конструкция, принцип действия
- •12.3. Вращающий момент асинхронного двигателя
- •12.4. Регулирование частоты вращения асинхронных двигателей. Реверсирование асинхронного двигателя
- •12.5. Однофазные асинхронные двигатели
- •12.6. Синхронные двигатели. Конструкция, принцип действия
Активные элементы схемы замещения
Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.
На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R. Ri - внутреннее сопротивление источника ЭДС. Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом. Рис. 1.3 тЙУ. 1.3
Ток ![]()
(1.2)
(1.3)
У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E. Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе. Возможен другой путь идеализации источника: представление его в виде источника тока. Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.
Идеальным называется источник тока, внутренняя проводимость которого равна нулю.
Поделим левую и правую части уравнения (1.2) на Ri и получим
,
где
- ток источника тока;
-
внутренняя проводимость.
![]()
У идеального источника тока gi = 0 и J = I.
Т

ок
идеального источника не зависит от
сопротивления внешней части цепи. Он
остается постоянным независимо от
сопротивления нагрузки. Условное
изображение источника тока показано
на рис. 1.4.
Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.
Рис. 1.4
Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.
1.4.Основные определения, относящиеся к схемам
Различают разветвленные и неразветвленные схемы. На рис. 1.5 изображена неразветвленная схема. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю.
Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю. Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения двух и более ветвей электрической цепи называется узлом. Узел, в котором сходятся две ветви, называется устранимым. Узел является неустранимым, если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой. Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением. Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром. Рис. 1.6
