
- •1. Основные определения
- •1.1. Основные пояснения и термины
- •1.2. Пассивные элементы схемы замещения
- •Активные элементы схемы замещения
- •1.4.Основные определения, относящиеся к схемам
- •1.5. Режимы работы электрических цепей
- •1.6. Основные законы электрических цепей
- •2. Эквивалентные преобразования схем
- •2.1.2.1. Последовательное соединение элементов электрических цепей
- •2.2. Параллельное соединение элементов электрических цепей
- •2.3.Преобразование треугольника сопротивлений в эквивалентную звезду
- •2.4.Преобразование звезды сопротивлений в эквивалентный треугольник
- •3. Анализ электрических цепей постоянного тока с одним источником энергии
- •3.1. Расчет электрических цепей постоянного тока с одним источником методом свертывания
- •3.2. Расчет электрических цепей постоянного тока с одним источником методом подобия или методом пропорциональных величин
- •4. Анализ сложных электрических цепей с несколькими источниками энергии
- •4.1. Метод непосредственного применения законов Кирхгофа
- •4.3. Метод узловых потенциалов
- •5. Нелинейные электрические цепи постоянного тока
- •5.1. Основные определения
- •5.2. Графический метод расчета нелинейных цепей постоянного тока
- •6. Электрические цепи однофазного переменного тока
- •6.1. Основные определения
- •6.2. Изображения синусоидальных функций времени в векторной форме
- •6.3. Изображение синусоидальных функций времени в комплексной форме
- •6.4. Сопротивление в цепи синусоидального тока
- •6.5. Индуктивная катушка в цепи синусоидального тока
- •6.6. Емкость в цепи синусоидального тока
- •6.7. Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •6.8. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока
- •6.9. Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора
- •6.10. Мощность в цепи синусоидального тока
- •6.11. Баланс мощностей
- •6.12. Согласованный режим работы электрической цепи. Согласование нагрузки с источником
- •7. Трехфазные цепи
- •7.1. Основные определения
- •7.2. Соединение в звезду. Схема, определения
- •7.3. Соединение в треугольник. Схема, определения
- •7.4. Расчет трехфазной цепи, соединенной звездой
- •7.5. Мощность в трехфазных цепях
- •8. Переходные процессы в линейных электрических цепях
- •8.1. Общая характеристика переходных процессов
- •8.2. Переходные процессы в цепях с одним реактивным элементом
- •8. Переходные процессы в линейных электрических цепях
- •8.3. Переходные процессы в цепях с двумя реактивными элементами
- •9. Магнитные цепи
- •9.1. Основные определения
- •9.2. Свойства ферромагнитных материалов
- •9.3. Расчет магнитных цепей
- •10. Трансформаторы
- •10.1. Конструкция трансформатора
- •10.2. Работа трансформатора в режиме холостого хода
- •10.3. Работа трансформатора под нагрузкой
- •10.4. Специальные типы трансформаторов
- •11. Электрические машины постоянного тока
- •11.1. Устройство электрической машины постоянного тока
- •11.2. Принцип действия машины постоянного тока
- •11.3. Работа электрической машины постоянного тока в режиме генератора
- •11.4. Генераторы с независимым возбуждением. Характеристики генераторов
- •11.5. Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением
- •11.6. Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •11.7. Механические характеристики электродвигателей постоянного тока
- •12. Электрические машины переменного тока
- •12.1. Вращающееся магнитное поле
- •12.2. Асинхронные двигатели. Конструкция, принцип действия
- •12.3. Вращающий момент асинхронного двигателя
- •12.4. Регулирование частоты вращения асинхронных двигателей. Реверсирование асинхронного двигателя
- •12.5. Однофазные асинхронные двигатели
- •12.6. Синхронные двигатели. Конструкция, принцип действия
9. Магнитные цепи
9.1. Основные определения
Как
известно из курса физики, вокруг
проводника с током появляется магнитное
поле. Интенсивность магнитного поля
характеризуется векторной величиной:
напряженностью магнитного поля
,
измеряемой в амперах на метр (A/м).
Интенсивность магнитного поля
характеризуется также вектором магнитной
индукции
,
измеряемой в теслах (Тл). Напряженность
магнитного поля не зависит, а магнитная
индукция зависит от свойств окружающей
среды.
где μ0 - абсолютная магнитная проницаемость, Гн/м;
μ - относительное значение магнитной проницаемости, безразмерная величина;
μ0 = 4π·10-7 Гн/м. В зависимости от величины относительной магнитной проницаемости, все вещества делятся на три группы.
К первой группе относятся диамагнетики: вещества, у которых μ< 1. Ко второй группе относятся парамагнетики, вещества с μ >1. К третьей группе относятся ферромагнетики, вещества с μ >> 1.
К ферромагнетикам принадлежат железо, никель, кобальт и многие сплавы из неферромагнитных веществ. Магнитной цепью называется совокупность устройств, содержащих ферромагнитные вещества. Процессы в магнитных цепях описываются с помощью понятий магнитодвижущей силы, магнитного потока. Магнитным потоком называется поток вектора магнитной индукции через поверхность S
.
Магнитный поток измеряется в веберах (Вб). Источником магнитодвижущей силы является либо постоянный магнит, либо электромагнит (катушка, обтекаемая током). Магнитодвижущая сила электромагнита
где I - ток, протекающий в катушке; W - число витков катушки. В магнитных цепях используется свойство ферромагнитного материала тысячекратно усиливать магнитное поле катушки с током за счет собственной намагниченности.
Информационные электрические машины
9.2. Свойства ферромагнитных материалов
Поместим ферромагнитный материал внутри катушки с током. Сначала, с увеличением напряженности намагничивающего поля, магнитная индукция быстро возрастает. Затем, из-за насыщения материала, при дальнейшем увеличении напряженности магнитного поля магнитная индукция почти не меняется. При уменьшении напряженности намагничивающего поля кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса. Явление гистерезиса заключается в том, что изменение магнитной индукции запаздывает от изменения намагничивающего поля. Кривая зависимости B(H), получающаяся при циклическом перемагничивании ферромагнитного материала, называется петлей гистерезиса. Эта кривая изображена на рис. 9.1. Чем больше площадь петли, тем больше потери на перемагничивание, нагревающие материал.
Рис.
9.1
Значение
магнитной индукции при напряженности
намагничивающего поля, равном нулю,
называется остаточной магнитной
индукцией Br,
или остаточной намагниченностью.
Напряженность магнитного поля
НС
при В = 0 называется коэрцитивной силой.
Ферромагнитные материалы
с большим значением коэрцитивной силы
()
называются магнитотвердыми. Из этих
материалов изготавливают постоянные
магниты.
Ферромагнитные
материалы с малым значением коэрцитивной
силы (
)
называются магнитомягкими. Эти материалы
используют в магнитопроводах электрических
машин и трансформаторов.
Таким образом, зависимости B = f(H) у
ферромагнитных материалов нелинейные.
Эти зависимости приводятся
в справочниках в табличной форме или в
виде кривых, называемых кривыми
намагничивания.