
- •1. Техническое задание
- •2. Расчёт оконечного каскада усиления, работающего в классе в
- •2.1 Выбор транзисторов мощного каскада усиления
- •Паспортные данные транзистора
- •2.2. Расчёт площади теплоотвода и числа параллельно включаемых транзисторов
- •2.2.1 Расчёт конструкции теплоотвода для размещения двух транзисторов
- •2.2.2 Расчёт конструкции теплоотвода на каждый из транзисторов
- •2.3. Расчёт величин сопротивлений уравнительных резисторов
- •2.4. Расчёт термостабилизирующих резисторов выходного каскада
- •Зависимости и
- •3. Расчёт предварительных каскадов усиления
- •3.1 Выбор транзисторов предварительных каскадов усиления
- •Паспортные данные транзистора
- •3.2 Расчёт сопротивлений резисторов промежуточных каскадов усиления
- •4. Расчёт внешних цепей усилителя
- •4.1 Расчёт коэффициента усиления охватываемой части усилителя и коэффициента
- •4.2 Расчёт параметров внешних цепей усилителя с параллельной отрицательной обратной связью по напряжению
- •4.3 Расчёт требуемой точности и выбор типа резисторов
2.2.1 Расчёт конструкции теплоотвода для размещения двух транзисторов
Рассмотрим оба варианта, чтобы были понятны их достоинства и недостатки. В начале проведём расчёт конструкции теплоотвода для размещения двух транзисторов.
1. Определяем тепловой коэффициент проектируемого радиатора:
2. В качестве исходного материала выбираем
алюминий, имеющий теплопроводность
3. Исходя из площади основания теплоотвода
,
полученной для нескольких параллельно
включенных транзисторов, задаёмся
размерами основания: длиной
;
шириной
и толщиной основания
.
4. Поскольку транзисторы марки КТ816А (КТ817А) имеют основание в виде прямоугольника, то для проведения дальнейших расчётов находим радиус эквивалентной окружности:
Затем определяем коэффициенты:
где
-
радиус эквивалентной окружности
транзистора
5. По полученным значениям
и
из
таблицы определяем критерий
6. Затем находим значение коэффициента теплоотдачи поверхности радиатора
7. После определения находим значение
коэффициента
:
8. По известным
и
из графиков определяем величину
.
9. Далее определяем величину перегрева
радиатора
в области монтажа транзистора
10. Полученные в предыдущих пунктах
расчёта значения величин
и
позволяют рассчитать среднеповерхностный
перегрев радиатора
и максимальную температуру теплоотвода
11. Используя значение
и таблицу, определяем коэффициент
12. Затем вычисляем коэффициенты
и
(для
неокрашенного радиатора:
;
):
13. Далее определяем суммарный коэффициент
а затем эффективный коэффициент теплоотдачи ребристой поверхности радиатора
14. По найденному значению
определим площадь ребристой поверхности
радиатора
Определим число рёбер
,
приняв
и
:
15. В заключение расчёта конструкции радиатора определим высоту рёбер
2.2.2 Расчёт конструкции теплоотвода на каждый из транзисторов
Для сравнения проведём расчёт конструкции
радиатора на каждый из двух параллельно
включенных транзисторов. В этом случае
мощность, рассеиваемая одним транзистором,
будет
,
а площадь основания теплоотвода
.
Тогда размеры основания примем
,
,
а его толщина
.
Тепловой коэффициент проектируемого радиатора:
Для проведения дальнейших расчётов находим радиус эквивалентной окружности для транзисторов марки КТ816А (КТ817А):
Затем определяем коэффициенты:
где
-
радиус эквивалентной окружности
транзистора
По полученным значениям
и
из
таблицы определяем критерий
Далее определяем значение коэффициента теплоотдачи поверхности радиатора
После определения находим значение
коэффициента
:
По известным
и
из графиков определяем величину
.
Далее определяем величину перегрева
радиатора
в области монтажа транзистора
Полученные в предыдущих пунктах расчёта
значения величин
и
позволяют рассчитать среднеповерхностный
перегрев радиатора
и максимальную температуру теплоотвода
Используя значение
и таблицу, определяем коэффициент
Затем вычисляем коэффициенты
и
(для
неокрашенного радиатора:
;
):
Далее определяется суммарный коэффициент
а затем эффективный коэффициент
теплоотдачи ребристой поверхности
радиатора
По найденному значению
определим площадь ребристой поверхности
радиатора
Определим число рёбер
,
приняв
и
:
В заключение расчёта конструкции радиатора определим высоту рёбер
Сравнивая полученные результаты, можно
определить объём теплоотвода. В случае
общего для двух транзисторов радиатора
габаритный объём составляет
а для двух отдельных радиаторов
Таким образом, с точки зрения габаритного объёма, в данном случае целесообразно применять отдельные теплоотводы для каждого из параллельно включаемых транзисторов. Однако может оказаться, что изготовление общего теплоотвода для размещения нескольких транзисторов более технологично.