
- •Тепловое излучение. Лучеиспускательная и поглощательная способность тел. Абсолютно черное тело. Закон Кирхгофа.
- •2. Закон Стефана-Больцмана. Закон смещения Вина.
- •3.Рспределение энергии в спектре излучения абсолютно черного тела и зависимость распределения от температуры.
- •4. Гипотеза и формула Планка.
- •5.Законы внешнего фотоэффекта. Опыт а.Г, Столетова. Уравнение Эйнштейна. Применение фотоэффекта.
- •6.Спектор излучения атома водорода. Модели атома Томпсона и Резерфорда .Формула Бальмера.
- •7.Теория атома водорода по Бору.
- •8. Квантовая теория атома водорода. Квантовые числа. Принцип Паули.
- •9. Многоэлектронные атомы. Распределение электронов по состояниям. Периодическая система элементов.
- •10. Гипотеза и формула Де-Бройля. Экспериментальное подтверждение гипотезы.
- •11.Фотоны. Масса и импульс фотона. Карпускулярно-волновой дуализм
- •12. Соотношение неопределенностей. Границы применимости классической физики к квантовым объектам.
- •13.Уравнение Шредингера.
- •14.Элементы зонной теории.
- •15.Зонные модели Ме, п/п, диэлектриков.
- •16.Понятие о классической и квантовой теории проводимости металлов.
- •17. Собственные полупроводники. Зависимость сопротивления полупроводников от температуры.
- •18. Примесные полупроводники. Акцепторные и донорные уровни.
- •19. Поглощение. Спонтанное и индуцированное излучение. Инверсная заселённость уровней и способы её получения.
- •20. Трёхуровневая система, способы получения основные свойства. Квантовые усилители, лазеры, свойства лазерного излучения.
- •21. Законы Ньютона.
- •22. Абсолютно твердое тело. Момент инерции. Момент сил.
- •23. Импульс. Закон сохранения импульса.
- •24. Идеальный газ. Формула Менделеева-Клапейрона.
16.Понятие о классической и квантовой теории проводимости металлов.
Основные положения классической теории сводятся к следующим:
1). Носителями тока в металлах являются электроны, движение которых подчиняется законом классической механики.
2). Поведение электронов подобно поведению молекул идеального газа (электронный газ).
3). При движении электронов в кристаллической решетке можно не учитывать столкновения электронов друг с другом.
4). При упругом столкновении электронов с ионами электроны полностью передают им накопленную в электрическом поле энергию.
В классической электронной теории проводимости металлов электроны проводимости могут обладать любыми значениями энергии. Согласно квантовой теории энергия электронов в любом кристаллическом теле (в частности, в металле) так же, как и энергия электронов в атоме квантуется. Это означает, что она может принимать лишь дискретные (т.е. разделенные конечными промежутками) значения, называемые уровнями энергии. Дозволенные уровни энергии в кристалле группируются в зоны.
Сверхпроводимость.
Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.
17. Собственные полупроводники. Зависимость сопротивления полупроводников от температуры.
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью.
В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При возрастании температуры проводимость полупроводника повышается.
18. Примесные полупроводники. Акцепторные и донорные уровни.
По виду проводимости полупроводники подразделяются на:
1. Электронные полупроводники (n-типа)
Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
2. Дырочные полупроводники (р-типа)
Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.