Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все вопросы 1-24.doc
Скачиваний:
7
Добавлен:
23.12.2018
Размер:
261.63 Кб
Скачать

22. Абсолютно твердое тело. Момент инерции. Момент сил.

Абсолютно твердое тело.

Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твердого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела), представляющее большой теоретический и практический интерес.

Существует несколько определений:

Абсолютно твёрдое тело — механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

Абсолютно твёрдое тело — тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.

Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела).

Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ей можно пренебречь, реальное тело может (приближенно) рассматриваться как абсолютно твёрдое тело без ущерба для задачи.

Момент инерции.

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J.

I=(знак сумм)mh^2 или I=(интеграл)ph^2dV,

где mi — массы точек тела, hi — их расстояния от оси z, r — массовая плотность, V — объём тела. Величина Iz является мерой инертности тела при его вращении вокруг оси/

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

МОМЕНТ СИЛ?? У КОГО ЕСТЬ В ЛЕКЦИЯХ СТАРЫХ?

23. Импульс. Закон сохранения импульса.

Как было показано, второй закон Ньютона может быть записан в виде

Ft=mv-mvo=p-po=Dp.

Векторную величину Ft, равную произведению силы на время ее действия, называют импульсом силы. Векторную величину р=mv, равную произведению массы тела на его скорость, называют импульсом тела.

В СИ за единицу импульса принят импульс тела массой 1 кг, движущегося со скоростью 1 м/с, т.е. единицей импульса является килограмм\метр в секунду (1 кг·м/с). Понятие импульса является одним из фундаментальных понятий физики. Импульс тела является одной из величин, способных при определенных условиях сохранять свое значение неизменным (но модулю, и по направлению).

Обозначим скорости тел массами m1 и m2 до взаимодействия через V1 и V2, а после взаимодействия — через V’1 и V’2.

По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить F и -F.

Для изменений импульсов тел при их взаимодействии на основании равенства Ft=mV-mV0 можно записать

Ft=m1V’1-m1V1, -Ft=m2V’2-m2V2,

где t — время взаимодействия тел. Из этих выражений получаем

m1V1+m2V2= m1V’1+m2V’2

Таким образом, векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия.

Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой системой.

В замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса.

Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета.