
- •1. Антропный принцип. Его интерпретации.
- •2. Биологический и социальный смысл смерти.
- •3. Биосфера: многокомпонентная иерархическая система.
- •4. Вещественная и корпускулярная теории теплоты. Вещественная теория теплоты.
- •Корпускулярная теория теплоты
- •5. Галилеевский принцип относительности и инерциальные системы.
- •6. Естествознание донаучное, преднаучное и научное.
- •7. Законы термодинамики.
- •8. Иерархия естественнонаучных законов
- •9. Классические концепции пространства и времени.
- •Проблема континуальности и дискретности пространства и времени
- •Классические интерпретации пространства и времени
- •Проблемы реального пространства
- •10. Количество видов. Причины видового разнообразия. Вид и видообразование
- •Проблемы видообразования
- •11. Концепция расширяющейся Вселенной.
- •12. Мозг, сознание поведение. Сознание и поведение
- •Функции головного мозга. Успехи нейрофизиологии
- •Поведение
- •13. О возможности существования жизни и разума во Вселенной.
- •14. О философии виртуальной реальности и киберпространства.
- •15. Опыты г. Менделя. Доминантные и рецессивные признаки.
- •16. Особенности основных биосферных циклов.
- •Биосферный цикл углерода
- •Биосферный цикл азота
- •Биосферный цикл фосфора
- •17. Первая научная революция.
- •18. Периодическая таблица химических элементов д. И. Менделеева
- •19. Правила и принципы естественнонаучного познания. Структура естественнонаучного познания
- •Принципы научного познания
- •Общие методы познания
- •Основные формы естествознания
- •Непостижимая эффективность математики
- •20. Роль химии в исследовании вещества.
- •21. Синергетика. Самоорганизация в природе и обществе. Самоорганизация
- •Синергетика
- •Механизм самоорганизации
- •Самоорганизация в диссипативных структурах
- •22. Структура гена. Расшифровка генетического кода.
- •23. Теория биохимической эволюции.
- •26. Третья научная революция.
- •27. Фундаментальные взаимодействия и законы природы
- •28. Хромосомная теория наследственности.
- •29. Хронология становления квантовой теории
- •30. Эволюционная теория естественного отбора (ч. Дарвин, а Уоллес).
- •33. Эволюционные учения ж.-в. Ламарка. Ж. Кювье, ч Лайелла.
- •34. Электромагнитная теория.
- •История открытия электричества
- •М. Фарадей: исследования электромагнетизма
- •Заряд и поле. Закон сохранения электрического заряда
- •Проводники, полупроводники и диэлектрики. Электрический ток
- •Электромагнитное взаимодействие. Электромагнитная теория поля
- •35. Симметрия
- •Симметрия и законы сохранения
- •Принципы, организующие сходство
- •Роль симметрии в организации мира
- •36. Организация современного естествознания
- •Иерархия естественнонаучных законов
- •37. Естественная магия, естествознание, наука, религия
- •Магия и религия
- •Религия и естествознание
- •38. Молекулярно-кинетическая теория
- •Основные положения молекулярно-кинетических представлений
- •39. Ноосфера
- •В. И. Вернадский о переходе биосферы в ноосферу
- •Естественноисторические аспекты трансформации биосферы в ноосферу
- •40. Значение арабской системы знаний в истории естествознания
- •Физические достижения арабского средневековьяvi
- •Астрономия арабо-мусульманского средневековья
35. Симметрия
Симметрия и законы сохранения. Принципы, организующие сходство. Принцип симметрии П. Кюри. Симметрия тела и симметрия среды. Роль симметрии в организации мира. Симметрия пространства и времени. Калибровочные симметрии.
Понятие симметрии хорошо знакомо и играет важную роль в повседневной жизни. Многим творениям человеческих рук умышленно придается симметричная форма, как из эстетических, так и практических соображений. Мяч симметричен, так как выглядит одинаково, как бы его ни поворачивали вокруг центра. Круглая печная труба сохраняет свой внешний вид при более ограниченном наборе вращений – поворотах вокруг вертикальной оси, проходящей через центр поперечного сечения.
В природе симметрия также встречается в изобилии. Снежинка обладает удивительнейшей гексагональной симметрией. Кристаллы также имеют характерные геометрические формы – вспомним хотя бы кубическую форму кристаллов соли, отражающую регулярность атомной структуры. Падающая дождевая капля имеет форму идеальной сферы и, замерзая, превращается в ледяной шарик – градину.
Симметрия и законы сохранения
Два вида симметрии с необычным упорством повторяются вокруг нас. Один отвечает зеркальной или билатеральной симметрии – «симметрии листка», другой соответствует радиально – лучевой симметрии.
Всё то, что растёт или движется по вертикали, то есть вверх или вниз относительно земной поверхности подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Всё то, что растёт и движется горизонтально или наклонно по отношению к земной поверхности подчиняется билатеральной симметрии – «симметрии листка» (одна плоскость симметрии), или так называемой зеркальной симметрии. Например, человеческое тело обладает (приближенно) зеркальной симметрией относительно вертикальной оси. В зеркале правая и левая руки и другие части тела меняются местами, но видимое нами зеркальное отражение узнаваемо. Многие архитектурные сооружения, например арки или соборы, обладают зеркальной симметрией.
Между геометрической симметрией и тем, что в физике принято называть законами сохранения, существует тесная связь. Законы сохранения говорят нам, что некоторые величины не изменяются со временем. В футболе число игроков на поле сохраняется. Игроки могут выходить на поле и уходить с поля, но общее число их остается постоянным. В физике существует закон, согласно которому в любой изолированной системе энергия, импульс и момент импульса должны сохраняться. Это не означает, что изолированная система не может изменяться, – просто любое изменение, происходящее в системе, должно быть таким, чтобы три названные величины оставались постоянными. В бильярде, где из-за гладкой текстуры поверхности бильярдного стола шары приближенно можно считать механически изолированными, законы сохранения энергии и импульса определяют направления движения и скорости шаров.
Законы сохранения энергии, импульса и момента импульса вытекают непосредственно из законов движения Ньютона, но более поздняя формулировка этих законов, данная Лагранжем и Гамильтоном, позволила гораздо четче выявить их значение. Механика Лагранжа и Гамильтона обнажила глубокую и мощную связь между сохранением той или иной величины и соответствующей симметрией рассматриваемой системы. Например, если система симметрична относительно вращений, то из уравнений Гамильтона и Лагранжа следует, что сохраняется момент импульса.
Хорошей иллюстрацией к сказанному может служить сила тяготения Солнца. Хотя сферическое Солнце вращается вокруг своего центра, это никак не сказывается на движении Земли по орбите. Гравитационное поле Солнца симметрично и поэтому не изменяется при простом вращении. Этой геометрической симметрии соответствует физический результат: момент импульса планеты, движущейся по орбите, всегда постоянен. Этот факт был открыт еще в ХVII в. Кеплером, который, однако, не оценил его истинный смысл. Аналогичные соображения применимы к импульсу и энергии. Симметрии, соответствующие вращению или отражению, наглядны и радуют глаз, но они не исчерпывают весь запас симметрий, существующих в природе.
В физике частиц явления симметрии зачастую связаны не только с процессами отражения и вращения, а последние могут происходить не только в обычном пространстве (и времени), но и в абстрактных математических пространствах.
Симметричными могут быть отдельные частицы или их группы, а поскольку свойства частиц определяются их способностью участвовать во взаимодействиях, или процессах, все операции, позволяющие достичь симметрии, связаны здесь с «законами сохранения». Если какой-либо субатомный процесс характеризуется симметрией, можно с уверенностью утверждать, что в нём принимает участие некая константа (постоянная величина). Константы являются маленькими островками стабильности в сложном танце субатомной материи и могут помочь нам в описании взаимодействий частиц. Некоторые величины остаются константами, или «сохраняются», во всех взаимодействиях, некоторые – только в их части. В результате в каждом процессе принимает участие определенное количество констант. Поэтому симметричность частиц и их взаимодействий воплощается в законах сохранения. Физики используют обе эти формулировки, говоря то о симметрии процесса, то о соответствующем законе сохранения.
Существуют четыре основные разновидности законов сохранения, связанных с соответствующими типами симметрии:
-
Все взаимодействия частиц характеризуются симметричностью в отношении пространственных перемещений: в Лондоне они происходят точно таким же образом, как и в Нью-Йорке. Эта симметрия связана с сохранением импульса и означает, что суммарная величина импульса, принимающего участие в каком-либо взаимодействии неизменна.
-
Взаимодействия частиц обладают симметричностью и в отношении перемещений во времени, протекая во вторник точно так же, как и в четверг. Эта симметрия связана с сохранением энергии и означает, что суммарное количество энергии частиц, включающей их массы, остаётся постоянным до начала реакции и после ее завершения.
-
Третий основополагающий тип симметрии связан с расположением в пространстве. Смысл этой симметрии заключается в том, что направление движения частиц, принимающих участие во взаимодействии (скажем, вдоль оси север-юг или запад-восток), не оказывает никакого влияния на результаты взаимодействия. Как следствие этой закономерности, суммарное количество вращения не должно изменяться во время процесса.
-
Наконец, четвертым законом является закон сохранения электрического заряда. Он связан с более сложной операцией симметрии. Однако его формулировка в качестве закона сохранения предельно проста: суммарный электрический заряд, присущий всем участвующим в столкновении частицам, остается неизменным.