
- •1. Сериальные закономерности атомных спектров.
- •19. Влияние межмолекулярных взаимодействий на спектр молекулы.
- •2. Тонкое расщепление атомных спектров. Спин-орбитальное взаимодействие.
- •17. Классификация электронных переходов в молекулах, соотношения между интенсивностями спектральных линий различных типов переходов.
- •3. Систематика спектров многоэлектронных атомов.
- •10. Колебательно-вращательные спектры двухатомных молекул.
- •5. Особенности спектральных термов в приближении “j-j” связи.
- •6. Общая характеристика спектров молекул.
- •7. Вращательные спектры двухатомных молекул в приближении жёсткого ротатора.
- •11. Колебательно-вращательные спектры многоатомных молекул.
- •12. Связь между характером колебаний и интенсивностью колебательных полос поглощения.
- •13. Классификация нормальных колебаний по форме и симметрии молекул.
- •16. Вероятность электронно-колебательных переходов.
- •8. Вращательные спектры многоатомных молекул.
- •18. Методы описания межмолекулярных взаимодействий.
- •20. Изменения спектров поглощения и люминесценции растворов по сравнению со спектрами газов. Принцип Франка-Кондона для межмолекулярных взаимодействий.
- •4. Особенности спектральных термов в приближении “l-s” связи.
- •9. Колебательные спектры двухатомных молекул
- •14. Спектры комбинационного рассеяния молекул
- •15. Электронные состояния двухатомных молекул.
7. Вращательные спектры двухатомных молекул в приближении жёсткого ротатора.
В чистом виде вращательные спектры можно наблюдать при излучении разряженных газов. Основной моделью вращательного движения 2-атомных молекул служит модель жесткого ротатора, т.е. это 2 массы, находящиеся на фиксированном расстоянии друг от друга. Такая система обладает двумя вращательными степенями свободы относительно взаимно-перпендикулярных осей, проходящих через центр тяжести молекул.
Кинетическая
энергия
Оба ядра в молекуле движутся с разными линейными скоростями, но с одной угловой скоростью. Ω - угловая скорость . V= Ω - r
,
-
момент инерции молекулы.
=>
В
модели жесткого ротатора вращательная
энергия ()
принимает дискретный набор значений,
определяемых квантовым числом j и
величиной, которая зависит только от
параметров молекул.
– вращательная
постоянная молекулы.
Структура энергетических уровней молекул (вращательные уровни) представляет собой «разбегающуюся» систему. (41)
Между такими уровнями энергии возможны переходы, которые подчиняются следующим правилам отбора:
Относительная интенсивность линий прямо пропорциональна числу переходов. Она определяется, прежде всего, распределением молекул по вращательным подуровням, которое задается соотношениями Максвелла-Больцмана. Следовательно, вероятность того, что молекула будет находиться в состоянии j:
Тогда вращательный спектр будет выглядеть следующим образом:
Реальные молекулы не являются жесткими ротаторами, т.к. на ядра при движении действуют центробежные силы, которые изменяют межъядерное расстояние, а, следовательно, и момент инерции молекулы. В процессе вращения в молекуле могут происходить колебания ядер. Поэтому более точно вращательный спектр описывается в модели нежесткого ротатора. В этой модели к энергии вращательного движения добавляется поправка, зависящая от j, и константа С, которая для каждой молекулы своя и находится из эксперимента:
второе слагаемое на порядок меньше первого.
Чисто вращательными спектрами поглощения и испускания обладают не все 2-ух атомные молекулы, а лишь имеющие электрический дипольный момент. У симметричных бездипольных молекул радиационные переходы между вращательными подуровнями запрещены. Но вращательные линии таких молекул можно наблюдать лишь при больших значениях давления газа, приводящих к появлению у молекулы индуцированного дипольного момента, обусловленного молекулярными взаимодействиеми.
11. Колебательно-вращательные спектры многоатомных молекул.
Трехатомная молекула не может быть описана моделью гармонического осциллятора, так как обладает ни одной, а несколькими степенями свободы. Поэтому колебательно-вращательный спектр многоатомных молекул содержит целый набор линий, интенсивности и частоты которых отражают особенность сложного колебательного движения в молекулах.
Если молекула состоит из N атомов, то в пространстве трех измерений у нее будет (3N-6) степеней свободы. Если молекула линейная, то число степеней свободы (3N-5).
Так как колебания отдельных атомов связаны друг с другом, то колебательное движение можно представить как суперпозицию колебаний набора свободных осцилляторов. Удобно выбрать естественную систему координат, которая задается расположением атомов в молекуле и характеризуется значением длин связей и углов между связями.
,
,
Общее число естественных координат равно числу степеней свободы.
Нужно выразить полную энергию молекулы через координаты:
– приведенная
масса,
– постоянная упругой связи между
атомами с координатами
и
.
и
В
этих выражениях первые слагаемые
характеризуют взаимодействие атомов,
связанных химической связью и имеющих
общую координату
.
Второе слагаемое в первой сумме
характеризует взаимодействие различных
естественных координат или динамическое
взаимодействие. Оно не зависит от
квазиупругих сил и связано с характером
движения колебания частиц. Второе
слагаемое во второй сумме характеризует
взаимодействие естественных координат,
определяемое квазиупругими силами и
выражается через силовые постоянные
k. Если различные связи в молекуле
независимы, вторые слагаемые будут
равны нулю. Количество энергии такой
системы можно представить как:
Каждый гармонический осциллятор будет колебаться как:
Для того чтобы многоатомную молекулу можно было рассматривать как совокупность ρ невзаимодействующих гармонических осцилляторов, нужно перейти от исходных естественных координат к их линейным комбинациям:
Новые
координаты называются нормальными,
их число тоже равно числу степеней
свободы, они связаны с естественными
координатами через коэффициенты
преобразования С и λ или нормированные
коэффициенты формы колебаний
.
С помощью нормальных координат удается
выразить полную колебательную энергию
молекулы как сумму отдельных энергий
осцилляторов.
Основное
свойство нормальных колебаний: при
таком колебании с частотой
колеблются все без исключения атомы
молекулы, и фаза колебаний всех атомов
оказывается одинаковой. Поэтому в
колебательных спектрах многоатомных
молекул проявляются частоты нормальных
колебаний.
Второе свойство: при равенстве частот и фаз колебаний всех частиц, образующих молекулу, амплитуды и направления движения могут сильное отличаться. (54)
Соотношение всех амплитуд, с которыми при данном нормальном колебании изменяются естественные колебательные координаты, называется формой нормального колебания. Форма нормального колебания определяется совокупностью коэффициентов преобразования С и λ, характеризующих вклад в данное нормальное колебание различных естественных координат.
Для того чтобы рассчитать колебательный спектр молекулы, нужно решить две задачи:
- механическая (1 этап: составляются уравнения движения системы, имеющие степень, равную числу степеней свободы - вековое уравнение; 2 этап: решают вековое уравнение, находят частоты и формы нормальных колебаний).
- электрооптическая (определяют интенсивности, поляризацию колебательных полос).