
- •Билет 4
- •Энергия заряженного конденсатора
- •Импульс тела
- •Закон сохранения импульса.
- •2) Закон Сохранения Импульса
- •3) Закон Сохранения Механической Энергии
- •2. Электрическим током называется направленное (упорядоченное) движение заряженных частиц.
- •Закон Ома
- •Билет 14
- •1) Работа и кинетическая энергия вращающегося тела.
- •1. Работа и мощность при вращении твердого тела.
- •2) Правила Кирхгофа для разветвленных цепей
- •1)Основной закон динамики вращательного движения
- •2.Теорема о циркуляции вектора магнитной индукции. Индукция магнитного поля длинного соленоида.
- •1.Центростремительная ускорение и сила. Центробежная сила инерции.
- •2. Индукция и напряженность магнитного поля прямого и кругового тока. Магнитное поле прямого тока
- •20. Основные уравнения молекулярно-кинетической теории строения вещества. Молярная масса. Число Авогадро. Уравнение состояния идеального газа (Менделеева – Клапейрона)
- •Уравнение среднеквадратичной скорости молекулы
- •Вариант 21
- •Основное уравнение мкт (википедия)
- •Эдс индукции движущегося в магнитном поле проводника
- •Вариант 22
- •Распределение молекул по скоростям
- •2. Действие магнитного поля на рамку с током
- •Билет № 23
- •1. Распределение Больцмана
- •Билет №24
- •2. Работа движущегося в магнитном поле проводника с током
2) Закон Сохранения Импульса
Импульсом называют векторную величину, равную произведению массы тела на ее скорость:
При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:
3) Закон Сохранения Механической Энергии
Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной.
Всеобщий закон сохранения энергии :
Полная механическая энергия тела или замкнутой системы тел, на которые не действуют силы трения, остается постоянной.
Закон сохранения полной механической энергии является частным случаем всеобщего закона сохранения и превращения энергии:
Энергия тела никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой.
Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
-
Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
- Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
- Упругая- Электронная
упругая поляризация характерна для
всех диэлектриков вне зависимости от
их агрегатного состояния (газ, жидкость
или твердое тело) и степени порядка
структуры (кристалл либо аморфное тело),
поскольку деформация электронных
оболочек атомов в электрическом поле
− их общее свойство. Электронные оболочки
и ядра упруго смещаются друг относительно
друга, поэтому такой вид поляризации
часто называют деформационной
поляризацией.
Поскольку ядра в раз
тяжелее электронов, то смещение испытывают
в основном электроны, причем преимущественно
валентные как более слабо связанные с
ядром по сравнению с электронами более
глубоких оболочек. Вследствие смещения
электронных орбит поляризованная
частица (атом или молекула) становится
электрическим диполем с определенным
наведенным (индуцированным) электрическим
моментом, равным произведению заряда
на величину смещения.
Вектор поляризации:
Вектор поляризации — векторная физическая величина, приведённый внешним электрическим полем дипольный момент единице объёма вещества, количественно характеристикидиэлектрической поляризации.
Обозначается
буквой ,
в СИ измеряется
в В/м.
,
где pei - электрический дипольный момент i-й молекулы;
n - общее число молекул в объеме DV.
Этот объем должен быть настолько малым, чтобы внутри него электрическое поле можно было считать однородным. Одновременно число n молекул в объеме DV должно быть достаточно велико для того, чтобы можно было применять статистические методы исследования.
Для однородного неполярного диэлектрика, находящегося в однородном электрическом поле:
Pe= n0 pe,
где n0 - число молекул в единице объема,
pe - дипольный момент одной молекулы.
Диэлектрическая поляризация обусловлена смещением связанных зарядов во внешнем электрическом поле. Если выделить какой либо объём в диэлектрике, то в результате приложения поля на его поверхности могут возникнуть поверхностные электрические заряды σsur. Такие заряды могут возникнуть или благодаря смещению электронной оболочки относительно ядра атома, или же в результате переориентации молекул, которые имеют собственный дипольный момент.
Нормальную к поверхности составляющую вектора поляризации определяют как
где — орт нормали
к поверхности.
Можно
ввести вектор
электрической индукции ,
который удобен при описании электрического
поля в
сплошной среде:
[1].
Связь с электрическим полем
В основном зависимость между вектором поляризации и электрическим полем, которое обусловило поляризацию, линейна и задается тензором поляризованности.
.
Связь между векторами по-ляризации и электрического смещения в вакууме и среде:
10билет
Связь между силой и потенциальной энергией:
Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.
|
Спонтанная поляризация сегнетоэлектриков:
Сегнетоэле́ктрики (названы по первому материалу, в котором был открыт сегнетоэлектрический эффект — сегнетова соль) — твёрдые диэлектрики (некоторые ионные кристаллы ипьезоэлектрики), обладающие в определённом интервале температур собственным электрическим дипольным моментом, который может быть переориентирован за счёт приложения внешнего электрического поля. Сегнетоэлектрические материалы обладают гистерезисом по отношению к электрическому дипольному моменту.
В англоязычной литературе для обозначения явления применяется термин ферроэлектрики (образовано по аналогии с ферромагнетиками).
Типичный представитель сегнетоэлектриков — сегнетова соль, двойная соль винной кислоты KNaC4H4O6·4Н2О; именно её название лежит в основе термина «сегнетоэлектрик». К сегнетоэлектрикам с более простой структурой относят целый ряд кристаллов со структурой перовскита, например, титанат бария BaTiO3, титанат свинца PbTiO3, а также их твердые растворы (цирконат-титанат свинца), ниобат лития LiNbO3.
Температура, при которой исчезает спонтанная поляризация (то есть собственный дипольный момент) и происходит перестройка кристаллической структуры, носит название температуры (точки) Кюри (ещё одна аналогия с ферромагнетиками). Переход через точку Кюри означает фазовый переход, а соответствующие фазы обозначаются как полярная (сегнетоэлектрик) и неполярная (параэлектрик[1] — нелинейный диэлектрик, не обладающий спонтанной поляризацией, относительная диэлектрическая проницаемость которого уменьшается с ростом температуры).
Спонтанная поляризация в сегнетоэлектриках в точке Кюри меняется либо непрерывно (переход второго рода, сегнетова соль), либо скачком (переход первого рода, титанат бария). Другие характеристики сегнетоэлектриков, такие как относительная диэлектрическая проницаемость, могут достигать в точке Кюри очень больших значений (104 и выше).
Вблизи точки Кюри в неполярной фазе выполняется закон Кюри — Вейсса, связывающий поляризуемость α и температуру T сегнетоэлектрика[2]:
где C и T0 — константы, определяемые видом сегнетоэлектрика. Величина T0 носит название температуры Кюри — Вейсса и очень близка к значению температуры Кюри. Если точек Кюри две, то вблизи каждой из них в неполярной фазе выполняется тот же закон. Вблизи верхней — в прежней форме, а вблизи нижней — в форме[2]:
Механизм приобретения дипольного момента в полярной фазе (фазе сегнетоэлектрика) может также различаться: возможен вариант как со смещением ионов (титанат бария; соответствующий фазовый переход называется переходом типа смещения), так и с упорядочиванием ориентации уже существующих в веществе диполей (дигидрофосфат калия,триглицинсульфат).
Применение:
Сегнетоэлектрические материалы (монокристаллы, керамика, плёнки) широко применяются в технике и в научном эксперименте. Благодаря большим значениям e их используют в качестве материала для конденсаторов высокой удельной ёмкости. Большие значения пьезоэлектрических констант обусловливают применение Сегнетоэлектрики в качествепьезоэлектрических материалов в приёмниках и излучателях ультразвука, в преобразователях звуковых сигналов в электрические и наоборот, в датчиках давления и др. Резкое изменение сопротивления вблизи температуры фазового перехода в некоторых Сегнетоэлектрики используется в позисторах для контроля и измерения температуры. Сильная температурная зависимость спонтанной поляризации (большая величина пироэлектрические константы) позволяет применять Сегнетоэлектрики в приёмниках электромагнитных излучений переменной интенсивности в широком диапазоне длин волн (от видимого до субмиллиметрового). Благодаря сильной зависимости e от электрического поля Сегнетоэлектрикииспользуют в нелинейных конденсаторах (варикондах), которые нашли применение в системах автоматики, контроля и управления. Зависимость показателя преломления от поля обусловливает использование Сегнетоэлектрики в качестве электрооптических материалов в приборах и устройствах управления световыми пучками, включая визуализацию инфракрасного изображения. Перспективно применение Сегнетоэлектрики в устройствах памяти вычислительных машин, дистанционного контроля и измерения температуры и др.
Билет 11.
1. Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:
Если тело
вращается вокруг неподвижной оси с
угловой скоростью , то
линейная скорость i-ой точки равна
,
где
,
- расстояние от этой точки до оси вращения.
Следовательно.
|
(5.11) |
где -
момент инерции тела относительно оси
вращения.
В общем
случае движение твердого тела можно
представить в виде суммы двух движений
- поступательного со скоростью, равной
скорости центра
инерции тела, и вращения с угловой
скоростью
вокруг
мгновенной оси, проходящей через центр
инерции. При этом выражение для
кинетической энергии тела преобразуется
к виду
|
(5.12) |
где -
момент инерции тела относительно
мгновенной оси вращения, проходящей
через центр инерции.