
- •Часть 2
- •Часть 2
- •Содержание
- •Введение
- •1. Требования к выполнению контрольной работы
- •2. Основные формулы, термины и определения
- •Раздел "Интегральное исчисление функции одной переменной"
- •3. Примерный вариант контрольной работы №2 Задание № 1 по теме "Дифференциальное исчисление функции одной переменной"
- •Задание № 2 по теме "Интегральное исчисление функции одной переменной"
- •4. Решение примерного варианта контрольной работы Задание № 1 по теме "Дифференциальное исчисление функции одной переменной"
- •Задание № 2 по теме "Интегральное исчисление функции одной переменной"
- •5. Варианты контрольных работ для слушателей зачного отделения
- •Контрольная работа № 2
- •Вариант № 1
- •Задание № 1
- •Задание № 2
- •Вариант № 4 Задание № 1
- •Задание № 2
- •Вариант № 5 Задание № 1
- •Задание № 2
- •Вариант № 6 Задание № 1
- •Задание № 2
- •Вариант № 7 Задание № 1
- •Задание № 2
- •Вариант № 8 Задание № 1
- •Задание № 2
- •Вариант № 9 Задание № 1
- •Задание № 2
- •Вариант № 10 Задание № 1
- •Задание № 2
- •Рекомендуемая литература
- •Образец оформления титульного листа контрольной работы
- •Часть 2
Вариант № 5 Задание № 1
-
Найти пределы функции
при различных значениях ɑ (не применяя правила Лопиталя):
ɑ
= 2; ɑ = 4; ɑ
.
-
Вычислить производную функций:
1).
;
2).
.
-
Вычислить y' в точке x0 :
; x0 = – 5.
-
Найти экстремумы функции
.
-
Найти наибольшее и наименьшее значение функции y на отрезке [ – 6, – 1]:
-
Вычислить
, используя правило Лопиталя:
; ɑ
= – 1.
Задание № 2
-
Вычислить неопределенный интеграл
-
Вычислить неопределенный интеграл
.
-
Вычислить неопределенный интеграл
-
Вычислить определенный интеграл
-
Вычислить определенный интеграл
-
Вычислить определенный интеграл
-
Решить дифференциальное уравнение
-
Решить задачу Коши:
,
.
Вариант № 6 Задание № 1
-
Найти пределы функции
при различных значениях ɑ (не применяя правила Лопиталя):
y = ɑ
= 2; ɑ = 5; ɑ
.
-
Вычислить производную функций:
1).
;
2).
.
-
Вычислить y' в точке x0 :
; x0
= 3.
-
Найти экстремумы функции.
-
Найти наибольшее и наименьшее значение функции y на отрезке [ – 6, – 2]:
-
Вычислить
, используя правило Лопиталя:
; ɑ
= – 1.
Задание № 2
-
Вычислить неопределенный интеграл
-
Вычислить неопределенный интеграл
-
Вычислить неопределенный интеграл
-
Вычислить определенный интеграл
-
Вычислить определенный интеграл
-
Вычислить определенный интеграл
-
Решить дифференциальное уравнение
-
Решить задачу Коши:
,
Вариант № 7 Задание № 1
-
Найти пределы функции
при различных значениях ɑ (не применяя правила Лопиталя):
y = ɑ
= 1; ɑ = – 4; ɑ
.
-
Вычислить производную функций:
1).
;
2).
.
-
Вычислить y' в точке x0 :
; x0
= 5.
-
Найти экстремумы функции:
.
-
Найти наибольшее и наименьшее значение функции y на отрезке [2, 9]:
-
Вычислить
, используя правило Лопиталя:
; ɑ
= –3.
Задание № 2
-
Вычислить неопределенный интеграл
.
-
Вычислить неопределенный интеграл
.
-
Вычислить неопределенный интеграл
.
-
Вычислить определенный интеграл
.
-
Вычислить определенный интеграл
.
-
Вычислить определенный интеграл
.
-
Решить дифференциальное уравнение
.
-
Решить задачу Коши:
,
.
Вариант № 8 Задание № 1
-
Найти пределы функции
при различных значениях ɑ (не применяя правила Лопиталя):
y = ɑ
= 5; ɑ = – 5; ɑ
.
-
Вычислить производную функций:
1).
.
2).
-
Вычислить y' в точке x0 :
; x0
=3.
-
Найти экстремумы функции:
.
-
Найти наибольшее и наименьшее значение функции y на отрезке [1, 8]:
.
-
Вычислить
, используя правило Лопиталя:
; ɑ
= 3.
Задание № 2
-
Вычислить неопределенный интеграл
.
-
Вычислить неопределенный интеграл
.
-
Вычислить неопределенный интеграл
.
-
Вычислить определенный интеграл
.
-
Вычислить определенный интеграл
-
Вычислить определенный интеграл
-
Решить дифференциальное уравнение
-
Решить задачу Коши:
,
.