
- •Часть II. Электричество и магнетизм.
- •Цель обучения
- •Содержание лекционного курса «Электричество и магнетизм» Семестр 3
- •Раздел 1. Электростатика /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1.2. Основные уравнения электростатики в вакууме.
- •1.3. Электростатическое поле в диэлектриках.
- •1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Раздел 2. Постоянный электрический ток /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •2.1. Постоянный электрический ток.
- •2.2. Основы классической теории электропроводности металлов.
- •2.3. Электрический ток в различных средах.
- •Раздел 3. Магнитное поле постоянного тока. /1а, 1б, 2б, 3б, 4б, 7б, 8б/
- •Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны /2а, 1б, 2б, 3б, 5б, 7б, 8б/
- •4.4. Общие свойства и характеристики волновых процессов.
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •1.19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
1.8. Эквипотенциальные линии и поверхности и их свойства.
Линии и поверхности, все точки которых имеют одинаковый потенциал, называются эквипотенциальными. Их свойства непосредственно вытекают из представления работы сил поля и иллюстрируются рис.2.12:
1)
-
работа по перемещению заряда вдоль
эквипотенциальной линии (поверхности)
равна нулю, т. к.
.
2)
- силовые линии поля в каждой точке
ортогональны к эквипотенциальной линии
(поверхности).
Рис.2.12. Иллюстрация свойств эквипотенциальных линий и поверхностей.
1.9. Потенциалы простейших электрических полей.
Из соотношения
,
определяющего связь между напряженностью
и потенциалом электрического поля,
следует формула для вычисления потенциала
поля:
где интегрирование производится вдоль силовой линии поля; С – произвольная постоянная, с точностью до которой определяется потенциал электрического поля.
Если направление
поля
совпадает с направлением радиус–вектора
(
),
то вычисления можно производить по
формуле:
.
Рассмотрим ряд примеров на применение этой формулы.
Пример1. Потенциал поля точечного заряда (рис.2.13).
Рис.2.13.
При
полагают, что
,
тогда
.
Таким образом, потенциал поля точечного заряда определяется по формуле:
Пример 2. Потенциал поля металлического заряженного шара.
а)
Изолированный шар (рис.2.14).
при
,
т.е. внутри шара
=
const.
Рис2.14.
Вне шара
.
При
φ = 0, следовательно, С = 0.
- вне шара.
Для определения
используем свойство непрерывности
потенциала: при переходе через границу
поверхности шара, потенциал не претерпевает
скачка. Полагая в последней формуле r
=R, находим:
- внутри шара.
б) Заземленный шар (рис.2.15).
.
При
,
то есть
- вне шара.
Рис.2.15. Внутри шара φ(r ≤ 0) = φ0 = 0.
Разность потенциалов U (рис.2.16) двух точек на силовой линии электрического поля заряженного шара определяется по формуле:
.
Рис.2.16.
Пример 3. Потенциал поля заряженной нити (рис.2.17).
При
:
Рис.2.17.
Разность потенциалов U (рис.2.17) двух точек на силовой линии поля заряженной нити:
Пример 4. Потенциал поля заряженной плоскости (2.18).
Рис.2.18.
Разность потенциалов U (рис.2.18) двух точек на силовой линии поля заряженной плоскости:
.
Лекция 3 Электростатическое поле в диэлектриках.
1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
Явление
возникновения электрических зарядов
на поверхности диэлектриков в электрическом
поле называется поляризацией.
Возникающие при этом заряды –
поляризационными (рис.3.1).
Рис.3.1. Поляризация диэлектрика.
В
проводниках (например, металлах) имеются
свободные заряды, которые
можно разделить (рис.3.2).
Рис.3.2. Разделение свободных зарядов в металле.
В
диэлектриках заряды смещаются лишь в
пределах отдельных молекул, поэтому их
разделить нельзя (рис.3.3). Такие заряды
называются связанными.
Рис.3.3. Связанные заряды разделить нельзя.
Различают следующие основные виды поляризации диэлектриков.
1)
Ориентационная поляризация
(полярные диэлектрики).
Молекулы таких
веществ уже в начальном состоянии имеют
собственный дипольный электрический
момент
(рис.3.4).
Рис.3.4. Полярная молекула воды.
Электрическим
диполем называется система двух
связанных между собой равных по величине
и противоположных по знаку точечных
зарядов. Величина
-
называется электрическим моментом
диполя,
-
плечо диполя – вектор, направленный
от отрицательного заряда к положительному.
В электрическом поле на диполь действует пара сил (рис.3.5), вследствие чего диполь устанавливается (ориентируется) вдоль силовых линий поля.
- момент пары сил,
действующий на диполь в электрическом
поле.
Рис.3.5. Диполь в электрическом поле.