
- •Часть II. Электричество и магнетизм.
- •Цель обучения
- •Содержание лекционного курса «Электричество и магнетизм» Семестр 3
- •Раздел 1. Электростатика /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1.2. Основные уравнения электростатики в вакууме.
- •1.3. Электростатическое поле в диэлектриках.
- •1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Раздел 2. Постоянный электрический ток /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •2.1. Постоянный электрический ток.
- •2.2. Основы классической теории электропроводности металлов.
- •2.3. Электрический ток в различных средах.
- •Раздел 3. Магнитное поле постоянного тока. /1а, 1б, 2б, 3б, 4б, 7б, 8б/
- •Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны /2а, 1б, 2б, 3б, 5б, 7б, 8б/
- •4.4. Общие свойства и характеристики волновых процессов.
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •1.19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
3.7. Энергия контура с током в магнитном поле.
Контур
с током, помещенный в магнитное поле,
обладает запасом энергии. Действительно,
чтобы повернуть контур с током на
некоторый угол
в направлении, обратном направлению
его поворота в магнитном поле, необходимо
совершить работу против сил, действующих
на этот контур со стороны поля. По
величине эта работа равна
.
Совершенная над контуром работа идет на увеличение его энергии. Поворачиваясь в первоначальное положение, контур возвратит затраченную на его поворот работу, совершив ее над какими-либо телами. Следовательно, запасенная контуром энергия есть:
.
(при
выводе этой формулы мы приняли, что при
энергия контура W,
определенная с точностью до произвольной
постоянной, равна нулю).
Полученную формулу можно написать также в виде:
Устойчивое равновесие
|
Неустойчивое равновесие |
Рис.9.3. Положения равновесия контура с током в магнитном поле.
Из
приведенной формулы видно, что устойчивому
положению равновесия контура с током
в магнитном поле (рис.9.3) соответствует
ориентация, при которой векторы
и
параллельны (α
= 0); в этом
случае энергия контура минимальна
и равна
.
Неустойчивому
положению равновесия соответствует
ориентация, при которой векторы
и
антипараллельны (α
= π); в этом
случае энергия контура максимальна
и равна
.
3.8. Контур с током в неоднородном магнитном поле.
Если
контур с током находится в неоднородном
магнитном поле (рис.9.4), то на него, помимо
вращающего момента
,
действует также сила
,
обусловленная наличием градиента
магнитного поля. Проекция этой силы на
направление касательной к силовой лини
поля в данной точке определяется по
формуле:
.
Рис.9.4. Контур с током в неоднородном магнитном поле.
Согласно
написанной формуле, сила, действующая
на контур в неоднородном магнитном
поле, зависит от взаимной ориентации
векторов
и
.
Если эти векторы параллельны, то сила
положительна и контур будет втягиваться
в область более сильного поля; если
векторы
и
антипараллельны,
то сила отрицательна и контур будет
выталкиваться из поля (рис.9.4)
3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле (рис.9.5). Магнитное поле будем считать однородным и направленным под углом α по отношению к нормали к плоскости переме-щения проводника.
Рис.9.5. Отрезок проводника с током в однородном магнитном поле.
Как
видно из рис.9.5, вектор
имеет две составляющие
и
,
из которых только составляющая
создает
силу, действующую в плоскости перемещения
проводника. По абсолютной величине эта
сила равна:
,
где I – сила тока в проводнике; l – длина проводника; B – индукция магнитного поля.
Работа этой силы на элементарном пути перемещения ds есть:
.
Произведение lds равно площади dS, заметанной проводником при движении, а величина BdScosα равна потоку магнитной индукции dФ через эту площадь. Следовательно, можем написать:
dA=IdФ.
Рассматривая отрезок проводника с током как часть замкнутого контура и интегрируя это соотношение, найдем работу при перемещении контура с током в магнитном поле:
A = I(Ф2 – Ф1)
где Ф1 и Ф2 обозначают поток индукции магнитного поля через площадь контура соответственно в начальном и конечном положениях.