
- •Часть II. Электричество и магнетизм.
- •Цель обучения
- •Содержание лекционного курса «Электричество и магнетизм» Семестр 3
- •Раздел 1. Электростатика /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1.2. Основные уравнения электростатики в вакууме.
- •1.3. Электростатическое поле в диэлектриках.
- •1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Раздел 2. Постоянный электрический ток /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •2.1. Постоянный электрический ток.
- •2.2. Основы классической теории электропроводности металлов.
- •2.3. Электрический ток в различных средах.
- •Раздел 3. Магнитное поле постоянного тока. /1а, 1б, 2б, 3б, 4б, 7б, 8б/
- •Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны /2а, 1б, 2б, 3б, 5б, 7б, 8б/
- •4.4. Общие свойства и характеристики волновых процессов.
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •1.19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
Лекция 7 Электрический ток в различных средах.
2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
Электролиты относятся к так называемым проводникам второго рода. В отличие от металлов и полупроводников (проводников первого рода), протекание тока в которых не сопровождается какими-либо химическими превращениями, в электролитах протекание тока всегда сопровождается химическими превращениями. Электролитами являются растворы солей, кислот и щелочей в воде и некоторых других жидкостях, а также расплавы солей, являющихся в твердом состоянии ионными кристаллами.
Носителями тока в электролитах являются положительные и отрицательные ионы, на которые диссоциируют (расщепляются) молекулы растворенного вещества. Степень диссоциации характеризуется коэффициентом диссоциации α, показывающим, какая доля молекул растворенного вещества находится в диссоциированном состоянии. Коэффициент диссоциации зависит от химической природы растворителя и концентрации растворяемого вещества. В частности, чем ниже концентрация растворяемого вещества, тем выше коэффициент диссоциации.
Если в электролит ввести твердые проводящие электроды и подать на них напряжение, то ионы придут в движение - возникнет электрический ток (рис.7.1). Положительные ионы (катионы) движутся к отрицательному электроду (катоду); отрицательные ионы (анионы) – к положительному электроду (аноду).
Рис.7.1. Электрический ток в электролите.
Достигнув соответствующих электродов, анионы и катионы отдают избыточные или получают недостающие электроны и превращаются в нейтральные молекулы. Таким образом, прохождение электрического тока через электролит сопровождается выделением на электродах составных частей электролита. Это явление называется электролизом. Основные законы электролиза были установлены в 1836г. Майклом Фарадеем (Faraday M., 1791-1867):
Первый закон Фарадея. Количество вещества, выделившегося на каждом из электродов при электролизе, пропорционально заряду, протекшему через электролит:
,
где К- электрохимический эквивалент, зависящий от природы вещества.
Второй закон Фарадея. Электрохимический эквивалент всех веществ пропорционален их химическому эквиваленту:
где
- атомный вес,
- валентность химического элемента;
-число Фарадея.
Выделение вещества на электродах начинается лишь с некоторого напряжения, называемого пороговым напряжением разложения электролита Up. Начиная с этого напряжения, в электролите появляется ток, плотность которого подчиняется закону Ома:
где n+ и n- - концентрация положительных и отрицательных ионов, соответственно; q+ и q- - заряды ионов; u+и u- - подвижности ионов; σ – электропроводность электролита.
Подвижность ионов
зависит от их природы и свойств
растворителя. С повышением температуры
подвижность ионов возрастает. В
электролитах подвижность ионов очень
мала. Так, для водных растворов при
комнатной температуре она составляет
10-8-10-7
(для сравнения, подвижность электронов
в металлах ~10-4
).
Если молекула
диссоциирует только на пару ионов, то
и
.
В этом случае
На рис.7.2 представлена
ВАХ электролита:
,
R – сопротивление
слоя электролита между электродами.
Рис.7.2. Вольтамперная характеристика электролита.
Электролиз находит самые разнообразные технические применения: гальванопластика и гальваностегия; электрометаллургия; электрополировка металлов; получение тяжелой воды и другие.