
- •Часть II. Электричество и магнетизм.
- •Цель обучения
- •Содержание лекционного курса «Электричество и магнетизм» Семестр 3
- •Раздел 1. Электростатика /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1.2. Основные уравнения электростатики в вакууме.
- •1.3. Электростатическое поле в диэлектриках.
- •1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Раздел 2. Постоянный электрический ток /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •2.1. Постоянный электрический ток.
- •2.2. Основы классической теории электропроводности металлов.
- •2.3. Электрический ток в различных средах.
- •Раздел 3. Магнитное поле постоянного тока. /1а, 1б, 2б, 3б, 4б, 7б, 8б/
- •Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны /2а, 1б, 2б, 3б, 5б, 7б, 8б/
- •4.4. Общие свойства и характеристики волновых процессов.
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •1.19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
2.9. Кпд источника тока.
Перемещая электрические заряды по замкнутой цепи, источник тока совершает работу. Различают полезную и полную работу источника тока. Полезная работа – это та, которую совершает источник по перемещению зарядов во внешней цепи; полная работа – это работа источника по перемещению зарядов во всей цепи:
- полезная работа;
- полная работа.
Соответственно этому, различают полезную и полную мощность источника тока:
Коэффициентом полезного действия (КПД) источника тока называют отношение:
Выясним, при каком
сопротивлении внешней цепи
полезная мощность максимальна.
Имеем:
,
где
;
,
откуда
.
Рис.5.18. Зависимость Рполезн от R.
Условие
называется условием согласования
источника и нагрузки. В этом случае
мощность, выделяемая источником во
внешней цепи, максимальна (рис.5.18).
Отметим, что при выполнении условия
согласования КПД источника тока
,
то есть максимальная полезная
мощность и максимальный КПД
несовместимы. Из приведенного
графика видно также, что одну и ту же
полезную мощность можно получить при
двух различных сопротивлениях
внешней нагрузки
.
Лекция 6 Основы классической теории электропроводности металлов.
2.10. Природа носителей тока в металлах.
Для выяснения природы носителей тока в металлах был поставлен ряд опытов.
Опыт Рикке (Riecke C., 1845-1915). В 1901г. Рикке осуществил опыт, в котором он пропускал ток через стопку цилиндров с тщательно отполированными торцами Cu-Al-Cu (рис.6.1). Перед началом опыта образцы были взвешены с высокой степенью точности (Δm = ±0,03 мг). Ток пропускался в течение года. За это время через цилиндры прошел заряд q = 3,5∙106 Кл.
По окончании опыта цилиндры были вновь взвешены. Взвешивание показало, что пропускание тока не оказало никакого влияния на вес цилиндров. При исследовании торцевых поверхностей под микроскопом также не было обнаружено проникновения одного металла в другой. Результаты опыта Рикке свидетельствовали о том, что носителями тока в металлах являются не атомы, а какие-то частицы, которые входят в состав всех металлов.
Такими частицами могли быть электроны, открытые в 1897г. Томсоном (Thomson J., 1856-1940) в опытах с катодными лучами. Чтобы отождествить носители тока в металлах с электронами, необходимо было определить знак и величину удельного заряда носителей. Это было осуществлено в опыте Толмена и Стюарта (Tolman R., 1881-1948, Stewart B., 1828-1887).
Опыт Толмена и Стюарта. Суть опыта, проведенного в 1916г., состояла в определении удельного заряда носителей тока при резком торможении проводника (рис.6.2). В опыте для этой цели использовалась катушка из медного провода длиной 500м, которая приводилась в быстрое вращение (линейная скорость витков составляла 300м/с), а затем резко останавливалась. Заряд, протекавший по цепи за время торможения, измерялся с помощью баллистического гальванометра.
Найденный из опыта
удельный заряд носителя тока
,
оказался очень близким к величине
удельного заряда электрона
,
откуда был сделан вывод о том, что ток
в металлах переносится электронами.