- •1.Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.
- •2. Гармонический осциллятор. Пружинный и математический маятники. Физический маятник. Приведенная длина физического маятника. Центр качания.
- •3.Электрический колебательный контур. Уравнение собственных колебаний ,формула Томсона. Взаимопревращения энергии в контуре.
- •4.Сложение колебаний одного направления. Понятие когерентности.
- •5. Сложение взаимно перпендикулярных колебаний. Типы поляризованных колебаний. Фигуры Лиссажу.
- •6.Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решения. Времярелаксации. Логарифмический декремент затухания. Добротность.
- •Время установления колебаний в контуре
- •8. Вынужденные колебания в электрических цепях. Дифференциальное уравнение колебаний. Векторная диаграмма. Полное сопротивление цепи переменного тока. Резонанс напряжений.
- •9. Волновое движение. Виды волн. Уравнение бегущей волны. Характеристика волн. Длина волны. Волновое число. Одномерное волновое уравнение. Скорость упругих волн.
- •Скорость волны.
- •10. Принцип суперпозиции волн. Волновой пакет. Фазовая и групповая скорости. Понятие о дисперсии.
- •11. Стоячие волны, их особенности. Уравнение стоячей волны. Пучности и узлы стоячей волны. Спектр частот стоячих волн в простых системах.
- •12. Основы теории Максвелла. Вихревое электрическое поле. Полная система уравнений Максвелла. Существование электромагнитных волн. Свойства электромагнитных волн.
- •13 Энергия электромагнитных волн. Вектор Умова-Пойтинга. Давление и импульс электромагнитного поля. Шкала электромагнитных волн.
- •14.Экспериментальное получение электромагнитных волн. Электромагнитные волны вдоль проводов. Стоячие электромагнитные волны в двухпроводной линии.
- •15.Основные законы геометрической оптики.
- •17. Способы получения интерференционной картины света. Условия максимума и минимума при интерференции. Ширина интерференционной полосы. Опыт Юнга.
- •18. Интерференция света в тонких пленках. Полосы равной толщины. Полосы равного наклона. Кольца Ньютона. Применение интерференции света. Интерферометры.
- •19. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Прямолинейное распространение света. Зонная пластинка.
- •20.Дифракция света на щели. Дифракция Фраунгофера. Влияние ширины цели на картинку дифракции. Дифракционная решетка.
- •22.Дисперсия света. Нормальная и аномальная дисперсия. Групповая скорость. Классическая электронная теория дисперсии света. Показатель преломления вещества.
- •23.Двойное лучепреломление. Обыкновенный и необыкновенные лучи. Одноосные кристаллы. Анизотропия кристаллов. Явление дихроизма. Поляроиды и поляризационные призмы. Призма Николя.
- •24.Искусственная оптическая анизотропия. Одностороннее сжатие.
5. Сложение взаимно перпендикулярных колебаний. Типы поляризованных колебаний. Фигуры Лиссажу.
Найдем результат сложения двух гармонических колебаний одинаковой частоты ω, которые происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем это в виде (1) где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний. Уравнение траектории результирующего колебания определим исключением из формул (1) времени t. Записывая складываемые колебания как и заменяя во втором уравнении на и на , найдем после несложных преобразований уравнение эллипса, у которого оси ориентированы произвольно относительно координатных осей: (2) Поскольку траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными. Размеры осей эллипса и его ориентация зависят от амплитуд складываемых колебаний и разности фаз α. Рассмотрим некоторые частные случаи, которые представляют для нас физический интерес: 1) α = mπ (m=0, ±1, ±2, ...). В этом случае эллипс становится отрезком прямой (3) где знак плюс соответствует нулю и четным значениям m (рис. 1а), а знак минус — нечетным значениям m (рис. 2б). Результирующее колебание есть гармоническое колебание с частотой ω и амплитудой , которое совершается вдоль прямой (3), составляющей с осью х угол . В этом случае имеем дело с линейно поляризованными колебаниями; 2) α = (2m+1)(π/2) (m=0, ± 1, ±2,...). В этом случае уравнение станет иметь вид (4) Это есть уравнение эллипса, у которого оси совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис. 2). Если А=В, то эллипс (4) превращается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу.
Если частоты складываемых взаимно перпендикулярных колебаний имеют различные значения, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, которая совершает одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Вид этих замкнутых кривых зависит от соотношения амплитуд, разности фаз и частот складываемых колебаний. На рис. 3 даны фигуры Лиссажу для различных соотношений частот (даны слева) и разностей фаз (даны вверху; разность фаз равна φ). Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, которые параллельны осям координат. По виду фигур можно найти неизвестную частоту по известной или найти отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу — широко применяемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.
6.Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решения. Времярелаксации. Логарифмический декремент затухания. Добротность.
Рассмотрим свободные затухающие колебания – колебания, у которых амплитуды из-за потерь энергии колебательной системой с течением времени убывают. Простейшим механизмом убывания энергии колебаний есть ее превращение в теплоту вследствие трения в механических колебательных системах, а также потерь, связанных с выделением теплоты, и излучения электромагнитной энергии в электрических колебательных системах. Вид закономерностей затухания колебаний задается свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, параметры которых, определяющие физические свойства системы, в ходе процесса остаются неизменными. Например, линейными системами являются пружинный маятник при малых растяжениях пружины (когда выполняется закон Гука), колебательный контур, у которого сопротивление, индуктивность и емкость не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются аналогичными линейными дифференциальными уравнениями, что дает основания подходить к изучению колебаний различной физической природы с единой точки зрения, а также моделировать их, в том числе и на ЭВМ. Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как (1) где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. Решение уравнения (1) запишем в виде (2) где u=u(t). После взятия первой и второй производных (2) и подстановки их в выражение (1) найдем (3) Решение уравнения (3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай положителньного коэффициента: (4) (если (ω02 - σ2)>0, то такое обозначение мы вправе сделать). Тогда получим выражение , у которого решение будет функция . Значит, решение уравнения (1) в случае малых затуханий (ω02 >> σ2 ) (5) где (6) — амплитуда затухающих колебаний, а А0 — начальная амплитуда. Выражение (5) представлено графики рис. 1 сплошной линией, а (6) — штриховыми линиями. Промежуток времени τ = 1/σ, в течение которого амплитуда затухающих колебаний становится мешьше в е раз, называется временем релаксации.
Затухание не дает колебаниям быть периодичными и, строго говоря, к ним нельзя применять понятие периода или частоты. Но если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 1). В этом случае период затухающих колебаний с учетом выражения (4) будет равен Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение называется декрементом затухания, а его логарифм (7) — логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы. Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна (8) (так как затухание мало (ω02 >> σ2 ), то T принято равным Т0). Из формулы (8) вытекает, что добротность пропорциональна числу колебаний Ne, которые система совершает за время релаксации. Выводы и уравнения, полученные для свободных затухающих колебаний линейных систем, можно использовать для колебаний различной физической природы — механических (в качестве примера возьмем пружинный маятник) и электромагнитных (в качестве примера возьмем электрический колебательный контур).
7.Вынужденные колебания осциллятора при гармоническом воздействии. Дифференциальное уравнение вынужденных колебаний и его решение. Время установления колебаний. Явление резонанса. Связь параметров резонансных кривых с добротностью.
Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону: При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила Закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.