Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Модуль 2.doc
Скачиваний:
4
Добавлен:
16.12.2018
Размер:
771.58 Кб
Скачать

Дать определение поглотительной способности почвы и перечислить её виды

Поглотительная способность почвы, свойство почвы задерживать в себе (сорбировать) различные вещества, соприкасающиеся с её твёрдой фазой. Виды Поглотительная способность почвы: механическая — поглощение высокодисперсных частиц почвенными порами; физическая — поглощение электролитов под влиянием поверхностной энергии; физико-химическая (обменное и необменное поглощение катионов) — обмен между катионами твёрдой фазы и почвенного раствора; химическая — образование малорастворимых и нерастворимых солей, которые выпадают в осадок и примешиваются к твёрдой фазе почвы; биологическая — сорбция веществ микроорганизмами и корнями растений. Количество всех сорбированных почвой обменных катионов (в мг/экв на 100 г почвы) составляет ёмкость поглощения; величина её может изменяться в зависимости от содержания почвенного поглощающего комплекса (в основном коллоидов почвы), реакции почвенного раствора, природы катионов и т.п.   Поглотительная способность почвы играет важную роль в процессах выветривания горных пород, выщелачивания почв, оказывает большое влияние на все почвенные процессы, тесно связана с продуктивностью почвы. Учение о Поглотительная способность почвы — теоретическая основа применения удобрений и химической мелиорации. Основы современного представления о Поглотительная способность почвы создал советский учёный К. К. Гедройц в 1912—32. В дальнейшем исследования продолжались Б. П. Никольским, И. Н. Антиповым-Каратаевым, А. Н. Соколовским, Н. И. Горбуновым и др.

Наиболее важные исследования в этой области принадлежат русскому ученому К.К. Гедройцу – создателю науки о поглотительной способности почв. Поглощающая способность почв зависит от состояния органоминерального комплекса, особенно той части, которая представлена коллоидами. Коллоидные частички, с какими связана поглощающая способность почв и образование почвенного поглощающего комплекса (ППК), имеют сложное строение и несут положительный или отрицательный заряд, который и регулирует обмен соответствующих катионов и анионов между ППК и почвенным раствором, что создает хорошие условия для питания растений. Коллоидные частички создаются гумусом, глинистыми минералами, оксидами железа и алюминия. Значит, их наибольшее количество в глинистых и гумусных почвах. Благодаря поглотительной способности, почва в той или иной мере задерживает от вымывания легкорастворимые соединения. Поглотительную способность почв учитывают при определении доз, сроков и способов внесения удобрений. Различают пять видов поглотительной способности почв: механическую, физическую, химическую, физико-химическую и биологическую. Механическое поглощение обусловлено способностью почвы, как и всякого пористого тела, задерживать в порах взмученные в воде частички, крупнее почвенных пор, это значит выступать своеобразным фильтром. Механическая – задерживает все частички и соединения, которые по диаметру больше, чем поры в почвах. Чем больше в почве глинистых частиц, гумуса и чем мельче почвенные поры, тем большую механическую поглотительную способность имеет почва. Механическое поглощение предохраняет вымывание из почвы иловатых и коллоидных частиц, некоторых удобрительных веществ. В результате заиления пор в профиле почвы могут образовываться водонепроницаемые горизонты, что может отражаться на состоянии водно-воздушных свойствах почвы. Механическую поглотительную способность используют при создании искусственных фильтров для грубой очистки питьевой воды, для заиливания стенок и днища оросительных каналов с целью ограничения потерь воды на фильтрацию. Физическое поглощение, или молекулярная адсорбция – это изменение концентрации молекул различных веществ у поверхности почвенных частичек. Связана с деятельностью сил поверхностного натяжения на поверхности коллоидной частички и слабо удерживает химические элементы или соединения. Обусловлена их свободной поверхностной энергией – последняя возрастает с увеличением площади общей поверхности мелких частичек то есть, чем они мельче, тем большая удельная поверхность и энергия поглощения вещества. Путем физического поглощения в почве могут накапливаться napы воды, газы – аммиак, кислород, углекислый газ и др. Почвенными частичками также могут адсорбироваться молекулы твердых веществ, находящихся в состоянии молекулярных растворов. Например, при прохождении сквозь почву навозной жижи, из нее поглощаются молекулы органических соединений в результате их притяжения поверхностью мелких частичек. Химическая поглотительная способность связана с образованием малорастворимых и нерастворимых солей в результате чисто химических реакций между веществами почвы, т.е. это реакция между ионами и коллоидами с созданием прочного соединения, химические элементы которого не доступны для питания растений. Например, при внесении в почву суперфосфата в ней может происходить следующая реакция: Са(Н2РО4)2 + 2Fe(OH)3 → 2FePO4 + Са(ОН)2 + 4Н2О. Соль FePO4, образовавшаяся в результате реакции, труднорастворимая в воде, доступность фосфат-иона растениями в этом случае резко снижается. Кстати, явление химического поглощения фосфора в дерново-подзолистых почвах довольно распространенное. Процесс этот нежелательный. Чтобы его ограничить, стремятся применять гранулированый суперфосфат, предпочитают локальное внесение удобрений. Физико-химическое поглощение, или обменная адсорбция, связана со способностью почвенных коллоидов обменивать катионы диффузного слоя на катионы почвенного раствора. Сочетает в себе физическую и химическую сорбцию (связь) с коллоидами. Совокупность нерастворимых в воде мелкодисперсных компонентов почвы, способных к процессам поглощения, обмену ионов, называют почвенным поглощающим комплексом (ППК). Основную часть ППК составляют коллоиды. Схематически обменная адсорбция выглядит так: [ППК-] NH4+ + KCl → [ППК-]K+ + NH4Cl. Реакции обмена ионов идут быстро, носят обратимый характер, осуществляются в эквивалентных количествах. В связи с тем, что почвенные коллоиды представлены в основном ацидоидами, объектами физико-химического поглощения (обмена) являются катионы. Способность различных катионов к поглощению почвой неодинаковая и зависит от их валентности и атомной массы: чем выше валентность катиона, а в границах одной валентности – атомная масса, тем выше энергия поглощения. По этой оценке катионы располагают в следующий ряд: Na+ < NH4+ < К+ < Mg2+ < H+ < Са2+ < А13+ < Fe3+. Исключение из этого правила – одновалентный катион водорода. Сумма всех катионов, находящихся в диффузном слое почвенных коллоидов и способных к обмену, называется емкостью поглощения. Ее величина в минеральных почвах колеблется от 5 до 60 мг-экв на 100 г почвы и зависит от содержания в ней гумуса и количества минеральных коллоидов. Емкость поглощения дерново-подзолистых суглинистых почв составляет обычно 10–20 мг•экв на 100 г почвы. Чем выше этот показатель, тем больше катионов содержит почва и тем больший в ней запас питательных элементов. Емкость поглощения (Е) почвы показывает, сколько ППК может удерживать катионов (или анионов). Она тем больше, чем больше гумуса и частичек физической глины в почве (чернозем, торф). Но среди катионов встречается водород, который подкисляет почву. Для этого определяется сумма обменных (поглощенных) оснований (S) (полезные основания Са, Mg). Она ниже, чем емкость поглощения. Состав обменных катионов ППК оказывает большое влияние на свойства почвы. Двухвалентные катионы – кальций, магний – хорошие коагуляторы, содействуют образованию водопрочной структуры, формированию нейтральной реакции почвы. Поглощенные водород и алюминий обусловливают потенциальную кислотность почвы. Ряд неблагоприятных свойств приобретает почва при содержании значительного количества в ППК натрия – щелочную реакцию, неводопрочную структуру и др. Поглощение почвой анионов чаще связано с биологическим поглощением и химическими реакциями, образующими малорастворимые соединения. Биологическая поглотительная способность связана с жизнедеятельностью растений, микроорганизмов. Благодаря им в составе органического вещества накапливается азот и зольные элементы. Для биологического поглощения характерна избирательность биоты при поглощении элементов питания из почвы: растения и микроорганизмы усваивают элементы не пропорционально содержанию их в почве, а в соответствии со своими физиологическими потребностями. После отмирания и минерализации отмерших организмов поглощенные ранее элементы питания вновь переходят в почву и используются новыми поколениями организмов. Особенно велика роль биологического поглощения в областях с промывным типом водного режима на рыхлых почвах.

Дать определение  кислотности, щёлочности и буферности почв

Кислотность почвы создается наличием ионов Н+ в почвенном растворе и поглощающем комплексе. Различают актуальную и потенциальную кислотность почвы. Актуальная кислотность обусловлена повышенной концентрацией ионов Н+ в почвенном растворе. Определяется она в водной вытяжке из почвы и измеряется величиной рН, которая обозначает отрицательный логарифм концентрации ионов Н+ в растворе.

При нейтральной реакции концентрация ионов Н+ и гидроксила (ОН)- одинакова — 10-7 г-ион на 1 л раствора, т. е. рН раствора 7. Если рН больше 7 — реакция щелочная, если рН меньше 7 — реакция кислая.

Актуальная кислотность создается при недостатке в почве нейтрализующих веществ за счет диссоциации Н+ от угольной, других водорастворимых кислот и гидролитически кислых солей. В насыщенных основаниями (Са, Mg и Na) и карбонатных почвах происходит нейтрализация кислот, реакция их раствора нейтральная или щелочная.

Реакция водной вытяжки разных почв колеблется от рН 3—3,5 (в сфагновых торфах) до рН 9—10 (в солонцовых почвах). Щелочную реакцию имеют южные черноземы и каштановые почвы (рН 7,5), сероземы (рН до 8,5) и солонцы (рН до 9 и более). Реакция раствора, близкая к нейтральной (рН 6,5—7), у обыкновенного и мощного черноземов, слабокислая реакция (рН 5,5—6,5) у выщелоченных черноземов и серых лесных почв, а подзолистые и дерново-подзолистые почвы имеют кислую или сильнокислую реакцию (рН 4—5 и ниже).

Актуальная кислотность находится в тесной связи с потенциальной (скрытой кислотностью), которая, в свою очередь, подразделяется на обменную и гидролитическую.

Ионы Н+ и Аl3+находящиеся в почвенном поглощающем комплексе, при взаимодействии с растворами солей вытесняются из поглощенного состояния и подкисляют почвенный раствор. В растворе образуется соляная кислота и хлористый алюминий — гидролитически кислая соль: АlCl2 + З H23 .

Кислотность, обусловленная ионами водорода и алюминия, находящимися в поглощенном состоянии и способными вытесняться в раствор при действии на почву какой-либо нейтральной соли, называется обменной кислотностью. Определяется она обработкой почвы раствором 1 и. КСl (солевая вытяжка) и выражается в мэкв на 100 г почвы, или величиной рН. В солевой вытяжке определяются актуальная и обменная кислотность, поэтому рН солевой вытяжки обычно - ниже, чем рН водной вытяжки.

Обменная кислотность характерна для дерново-подзолистых и серых лесных почв, оподзоленных и выщелоченных черноземов, а также красноземов. Это скрытая кислотность, но при действии на почву нейтральных солей она переходит в актуальную и оказывает отрицательное влияние на развитие растений. Особенно вредно действует переходящий в раствор алюминий. Результаты определения рН солевой вытяжки служат для характеристики степени кислотности почвы. При рН до 4,5 кислотность сильная, рН 4,6—5 — средняя, рН 5,1—5,5 — слабая, рН 5,6— 6,0 — реакция, близкая к нейтральной, >6,0 — нейтральная. На основании определения рН солевой вытяжки в образцах почвы, взятых с различных частей поля (или разных полей), оформляются картограммы кислотности. Для обозначения контуров почв с различными величинами рН используют следующие цвета: <4,5— красный, 4,6—5 — желтый, 5,1—5,5 — зеленый, 5,6—6,О—голубой, >6,0 — синий. По величине рН солевой вытяжки устанавливают степень нуждаемости почв в известковании и ориентировочную норму извести.

При обработке почвы 1 н. КСl из почвенного поглощающего комплекса переходят не все ионы водорода, часть их более прочно поглощена коллоидами почвы и нейтральными солями не вытесняется. Их можно вытеснить при действии на почву раствором гидролитически щелочной соли, например уксуснокислого натрия — СН3СООNa

Кислотность почвы, обусловленная менее подвижными ионами водорода, которые вытесняются при обработке почвы гидролитически щелочной солью, называется гидролитической кислотностью. С ней приходится встречаться чаще, чем с обменной, она свойственна большинству почв, даже черноземам. Эта кислотность включает менее подвижную часть поглощенных ионов Н+, труднее обменивающихся на катионы почвенного раствора. Определять ее необходимо для решения ряда практических вопросов применения удобрений — установления норм извести и возможности эффективного применения фосфоритной муки. При обработке почвы раствором уксуснокислого натрия в раствор переходят все содержащиеся в почве ионы водорода (и алюминия), т. е. определяется сумма всех видов кислотности (актуальная, обменная и гидролитическая). Чтобы определить величину собственно гидролитической кислотности, необходимо из общего показателя вычесть величину обменной кислотности. Обычно этого не делают и термином «гидролитическая кислотность» обозначают общую кислотность почвы, выражая ее в мэкв на 100 г почвы.

Для характеристики почвы важно знать не только общее количество поглощенных ионов водорода, но и соотношение между ними и другими поглощенными катионами — Са2+, Mg2+ , Na+ , К+ и др. Количество всех поглощенных катионов, кроме водорода и алюминия, в мэкв на 100 г почвы (сумма поглощенных оснований) обозначается буквой S, а общее количество поглощенного водорода — знаком Нг. Сложение их дает общую емкость поглощения почвы (Т) в мэкв на 100 г почвы: S+Hr=T. Сумма поглощенных оснований (5), выраженная в процентах от емкости поглощения (Т), называется степенью насыщенности почв основаниями и обозначается буквой V.

V,%= S/T*100 , или V,%=S/(S+Hr)*100

Степень насыщенности основаниями — важный показатель для характеристики степени кислотности почвы, она учитывается при определении нуждаемости почв в известковании. Чем меньше степень насыщенности основаниями (при одинаковой абсолютной величине кислотности), тем сильнее потребность почв в известковании.

Емкость поглощения и степень насыщенности почв основаниями определяют ее буферную способность, т. е. способность почвы сопротивляться изменению реакции почвенного раствора в сторону подкисления или подщелачивания при внесении физиологически кислых или физиологически щелочных удобрений. Чем выше емкость поглощения почвы, тем сильнее ее буферная способность. Поглощенные основания (кальций, магний и др.) оказывают буферное действие против подкисления, а поглощенный водород — против подщелачивания реакции почвенного раствора:

(ППК)Са + 2Н NO3 « (ППК) HH +Ca(NO3)2 (ППК) HH + Ca(OH)22O

В почвах, насыщенных основаниями, свободные кислоты (например, H NO3) нейтрализуются вследствие поглощения почвой ионов Н+ кислоты в обмен на катионы Са2+ , которые из поглощенного состояния вытесняются в раствор, и в нем вместо кислоты образуется нейтральная соль. В почвах, не насыщенных основаниями, имеющих обменную или гидролитическую кислотность, нейтрализация щелочи Са(ОН) 2+, которые вытесняются в раствор и связывают ионы ОН- с образованием воды.

Чем больше гидролитическая кислотность почвы, тем выше буферность ее против подщелачивания. Почвы, имеющие высокую степень насыщенности основаниями (черноземы, сероземы), имеют высокую буферность против подкисления Внесение высоких доз органических удобрений и известкование повышают буферность почвы против подкисления.

Перечислить формы воды в почве и дать их определение.

В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.

Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) - прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.

Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.

Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие Свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее юойства не так резко отличны от свободной воды. Тем не менее Вила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.

Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.

При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.

Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.

В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.

Перечислить водные свойства почв и дать их определение

К важнейшим водным свойствам почв относятся водопроницаемость, водоподъемная способность, влагоемкость почв.

Водопроницаемость — это способность почвы впитывать и пропускать через себя воду. Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, ненасыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. В первый период поступления воды в почву водопроницаемость высокая, затем постепенно уменьшается и к моменту полного насыщения (к началу фильтрации) становится почти постоянной. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация — силами тяжести.

От водопроницаемости зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекает по поверхности, что приводит не только к непродуктивному расходованию влаги, но может вызывать эрозию почвы. Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых — до 5 см. Наибольшая водопроницаемость характерна для песчаных, также хорошо оструктуренных почв, низкая — для глинистых и бесструктурных плотных почв. Водопроницаемость зависит и от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций, наоборот, увеличивает.

Водоподъемная способность —свойство почвы поднимать воду по капиллярам. Вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение. Чем тоньше капилляр, тем более вогнут мениск и соответственно выше водоподъемная способность. Самым высоким капиллярным подъемом обладают суглинистые почвы (3...6 м). В песчаных почвах поры крупные, поэтому высота капиллярного подъема в 3...5 раз меньше, чем в суглинистых, и обычно не превышает 0,5...0,7 м. В плотных глинистых почвах этот показатель уменьшается из-за того, что очень тонкие поры заполнены связанной водой.

Скорость капиллярного подъема зависит от размера капилляров и вязкости воды, обусловливаемой ее температурой. В крупных порах вода поднимается быстрее, но достигает небольшой высоты. С уменьшением радиуса капилляров скорость уменьшается, а высота подъема возрастает. С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью. Засоленные грунтовые воды при их капиллярном подъеме часто приводят к засолению почв.

Влагоемкость — способность почвы удерживать воду. В зависимости от водоудерживающих сил различают максимальную адсорбционную, капиллярную, предельно-полевую и полную влагоемкости.

Максимальная адсорбционная влагоемкость (МАВ) — это наибольшее недоступное растениям количество влаги, которое прочно удерживается молекулярными силами почвы (адсорбцией). Она зависит от суммарной поверхности частиц, а также от содержания гумуса: чем больше в почве илистых частиц и гумуса, тем выше максимальная адсорбционная влагоемкость.

Капиллярная влагоемкость (KB) — количество воды, которое удерживается в почве при заполнении капиллярных пор над уровнем грунтовых вод. Капиллярная влагоемкость зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается.

Предельно-полевая влагоемкость (ППВ) — количество воды, которое удерживается в полевых условиях после полного увлажнения почвы с поверхности и свободного стекания избыточной воды. Грунтовые воды в этом случае не оказывают влияния на влажность почвы. Предельно-полевая влагоемкость зависит от гранулометрического состава, плотности и пористости почвы. Она соответствует количеству капиллярно-подвешенной воды. Синоним предельно-полевой влагоемкости — наименьшая влагоемкость (НВ).

Полной влагоемкостью (ПВ) называют такое состояние влажности почвы, когда все поры заполнены водой. Полная влагоемкость наблюдается над водоупорными горизонтами, на которых находятся грунтовые воды. В условиях полного насыщения почвы водой отсутствует аэрация, что затрудняет дыхание корней растений.

Влажность почвы подразделяют на абсолютную и относительную.

Абсолютная влажность — это общее количество воды в почве, выраженное в процентах по отношению к массе почвы.

Относительная влажность — отношение абсолютной влажности данной почвы к ее предельно-полевой влагоемкости.

По относительной и абсолютной влажности почвы определяют доступность почвенной влаги культурным растениям.

Влажность завядания растений — влажность почвы, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, то есть это нижний предел доступности растениям влаги. Зная абсолютную влажность и влажность завядания растений, можно рассчитать запас продуктивной влаги.

Продуктивная (активная) влага — количество воды сверх влажности завядания, используемое растениями для создания урожая. Так, если абсолютная влажность данной почвы в пахотном слое составляет 43 %, а влажность завядания — 13 %, то запас продуктивной влаги равняется 30 %.

Для удобства определения количество продуктивной влаги выражают в миллиметрах водяного столба. В таком виде продуктивную влагу легче сопоставлять с количеством осадков. Каждый миллиметр воды на площади 1 га соответствует 10 т воды.

Содержание воды в почве обычно определяют весовым методом: навеску почвы высушивают при температуре 100...105 °С и в зависимости от потери в массе рассчитывают влажность в весовых или объемных процентах по отношению к сухой почве.

Формы почвенного воздуха, воздушно-физические свойства почв

Почвенный воздух

Почвенный воздух состоит из смеси различных газов:

  1. кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;

  2. углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;

  3. метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;

  4. водород;

  5. сероводород;

  6. азот; более вероятно образование азота в виде более сложных соединений (например, мочевины)

И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.

Различие состава почвенного и атмосферного воздуха обусловлено протекающими в почве биологическими процессами. Понижение содержания в почвенном воздухе кислорода связано с потреблением его аэробными микроорганизмами на различные реакции окисления, включая разложение мертвого органического вещества, и поглощением корневыми системами высшей растительности. Обогащение почвенного воздуха углекислотой происходит в результате разложения мертвого органического вещества микроорганизмами и выделения ее корневыми системами. В заболоченных почвах, где протекают анаэробные процессы разложения, в заметных количествах накапливаются водород, метан, сероводород.

Состав почвенного воздуха на определенном уровне поддерживается воздухообменом с атмосферой. Скорость воздухообмена должна соответствовать потреблению в почве кислорода и образованию углекислоты. Обновляется состав почвенного воздуха несколькими путями.

На границе соприкосновения почвенного воздуха с атмосферным вследствие неравенства их состава возникает диффузия газов. Из более богатого углекислотой почвенного воздуха молекулы углекислого газа диффундируют в атмосферный воздух, а из атмосферного воздуха молекулы кислорода переходят в почвенный воздух, где их концентрация ниже.

На воздухообмен оказывают влияние колебания температуры. Повышение температуры увеличивает скорость движения молекул газа, а следовательно диффузию. При нагревании почвы в дневные часы заключенные в ней газы увеличиваются в объеме и частично выделяются в атмосферу. Теплый воздух, как более легкий, стремится кверху. В ночное время почва охлаждается, объем заключенных в ней газов уменьшается, и тогда в почву из атмосферы поступает более богатый кислородом воздух. На воздухообмен оказывают влияние также атмосферные осадки и ветер.

Воздухообмен почвы с атмосферой осуществляется преимущественно через некапиллярную скважность, поэтому полнота воздухообмена зависит от величины некапиллярной скважности. Если некапиллярная скважность невелика или почва насыщена водой до состояния полной влагоемкости, то воздухообмен затруднен и устанавливаются анаэробные условия. Это имеет место преимущественно в почвах повышенного увлажнения или весной в период насыщения талыми водами.

Образование углекислоты и потребление кислорода происходит главным образом в верхней части почвенного профиля, где сосредоточена основная масса корневых систем и наиболее интенсивно идут процессы разложения мертвого органического вещества. Образуемая углекислота в процессе газообмена частично выделяется в атмосферу, частично как тяжелый газ опускается в нижние горизонты. В верхних горизонтах, где газообмен осуществляется полнее, почвенный воздух богаче кислородом и относительно беднее углекислотой, в нижних горизонтах, в которых газообмен затруднен, содержание кислорода ниже, а углекислоты выше.

Различная интенсивность биологических процессов в совокупности с колебаниями температуры и другими причинами обусловливает колебания состава почвенного воздуха в течение вегетационного периода.

Составные части твердой фазы почвы поглощают молекулы воды более интенсивно, чем молекулы газа, поэтому твердая фаза почвы во влажном состоянии не поглощает газов. Способностью поглощать газы обладает почва при влажности ниже максимальной гигроскопической.

Перечислить и дать определение тепловых свойств почв

Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом, который зависит от соотношения энергии солнечной радиации, поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126-167), в черноземной зоне - 30-50 (126-209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по ее температурному режиму. Температурный режим графически изображается в виде термоизоплет - кривых, соединяющих точки одинаковых температур.

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от -12 до +20°С. Выделяются 2 области - положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см. в основном совпадает с областью распространения многолетнемерзлых пород.

Тепловые свойства почвы

Почва получает тепло главным образом от солнечной радиации. Степень нагревания почвы зависит от географического положения данной местности, времени года, от погоды, уклона местности, характера почвы. Хуже всего нагреваются почвы, лежащие на северном склоне. Темные, богатые перегноем, а главное, сухие почвы прогреваются значительно скорее, чем светлые и в особенности сырые, потому что много тепла тратится на согревание и испарение воды, находящейся в почве. Почва забирает тепло также и из воздуха и атмосферных осадков. Небольшое количество тепла передается поверхности почвы от внутренних более теплых слоев почвы, а также выделяется при дыхании живых существ, при разложении растительных и животных остатков и при взаимодействии некоторых составных частей почвы между собой. Иногда почву согревают теплые источники, вытекающие на поверхность земли из глубоких разогретых ее слоев.

Почва, как и воздух, обладает плохой теплопроницаемостью и весьма медленно передает приобретенное тепло с поверхности более глубоким слоям. Вследствие плохой теплопроводности почвы подвальные помещения летом бывают прохладнее, а зимой теплее, чем помещения верхних этажей. Во влажной почве теплопроводность увеличивается, потому что вода — хороший проводник тепла.

Тепловые свойства почвы оказывают влияние на температуру приземного слоя воздуха. Влияние почвы на приземный слой воздуха и на человека, в особенности на детей, резко заметно в жаркое время года, когда температура почвы и ее уличных и дорожных покрытий может довольно значительно повышаться. Растительный покров и снег защищают почву от потери тепла излучением. Снежный покров охраняет почву от промерзания.

Суточные колебания температуры воздуха отражаются на почве до глубины только 0,5—1 м, а глубже имеются уже постоянная суточная температура. Годичные колебания температуры воздуха отражаются на почве в зависимости от географической широты, но тоже на сравнительно небольшую глубину. На глубине 8—30 м в течение всего года держится одинаковая постоянная температура без колебаний. Ниже этого слоя при углублении на каждые 35 м температура повышается на 1°.

В полярных странах на известной глубине почва никогда не оттаивает. Это — область вечной мерзлоты. Ниже этого слоя температура повышается, как указано выше.

Тепловой режим почвы имеет большое гигиеническое значение ввиду его влияния на жизнь микроорганизмов, на процессы разложения органических веществ. Тепловой режим почвы имеет значение при определении глубины заложения фундаментов зданий, водопроводных и канализационных труб и т.д.

Классификация почв. Основные таксономические единицы: тип, подтип, род, вид, разновидность

Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.

В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года[1].

Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.

В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии — группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название — описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.

Термины по ГОСТу: [2]

Классификация почв — система разделения почв по происхождению и (или) свойствам.

  • Тип почвы — основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.

    • Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.

      • Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.

        • Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.

          • Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.

            • Разряд почвы — классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.

Закономерности географии почв

Закономерности географического распространения почв

В результате сложного взаимодействия факторов почвообразования в почвенном покрове страны обнаруживаются определенные закономерности географического распространения почв. Основными законами географии почв являются законы горизонтальной зональности, вертикальной почвенной зональности, фациальности почв, аналогичных топографических рядов (зональных типов почвенных комбинаций).

Законы горизонтальной (широтной) и вертикальной почвенной зональности были сформулированы В.В.Докучаевым в 1899 г. в работе «К учению о зонах природы».

По закону горизонтальной зональности распространение основных типов почв по континентам рассматривается как последовательная смена почвенного покрова по мере изменения широты местности в соответствии с изменением климата, характера растительности и других условий почвообразования. Так, в Северном полушарии Земли выделяют пять основных широтных почвенно-биоклиматических поясов, обусловленных преимущественно термическими особенностями климата: полярный, бореальный, суббореальный, субтропический и тропический. В пределах каждого пояса выделяются почвенно-географические зоны. Например, в суббореальном поясе – лесостепь (серые лесные почвы, оподзоленные, выщелоченные и типичные черноземы), степь (обыкновенные и южные черноземы), сухая степь (темно-каштановые и каштановые почвы), полупустыня (светло-каштановые и бурые полупустынные почвы), пустыня (сероземы и такыровидные почвы).

Проявление закона горизонтальной зональности усложняется в зависимости от местных особенностей земной поверхности и различий в темпах биологического круговорота элементов в системе почва – растение. Сильное влияние на характер почвенного покрова оказывает рельеф.

По закону вертикальной зональности в горных системах рассматривается последовательная смена типов почв по мере нарастания абсолютной высоты от подножия гор к вершинам в соответствии с изменением климата, растительности и других условий почвообразования. В.В. Докучаев предполагал, что вертикальная зональность по составу зон может повторять горизонтальную. Например, с подъемом в горы может наблюдаться такая же смена почвенных зон, как и на равнине, если двигаться в меридиональном направлении.

Современными исследованиями почвенного покрова в горных странах доказано, что взаимное расположение почвенных типов в горах весьма своеобразно. Оно зависит от местных особенностей горного почвообразования. Большое влияние на распространение почв в горах оказывает, кроме высоты и экспозиция склона, в связи с чем границы почвенных зон на южных и северных склонах могут проходить на разной высоте. Горные барьеры на путях перемещений воздушных масс могут также существенно изменять очертания горизонтальных почвенных зон.

По закону фациальности почв объясняются и местные провинциальные (фациальные) особенности климата, способствующие неоднородности почвенного покрова вплоть до формирования особых типов почв.

География почв — наука о закономерностях распространения почв на поверхности Земли в целях почвенно-географического районирования.

Делится на общую и региональную. Общая география почв изучает факторы почвообразования и общие закономерности географического распределения почв, типы структуры почвенного покрова. Региональная география почв изучает вопросы районирования и занимается описанием почвенного покрова конкретных регионов.

Основной метод географии почв — сравнительно-географический, с помощью которого географическое распределение почв изучают в связи с факторами почвообразования. Широко используется картографирование — составление почвенных карт.

Василий Васильевич Докучаев

География почв возникла в конце XIX века, её основатель В.В. Докучаев, который выявил связи между почвой и формирующими её природными факторами, показал закономерности распространения почв и разработал метод профильного изучения почв в совокупности с факторами почвообразования.

Значительную роль докучаевская почвенно-географическая школа сыграла в развитии географии почв мира.

География почв в качестве учебного курса читается на биолого-почвенных и географических факультетах университетов или входит как обязательная составная часть в курс почвоведения. Первая кафедра географии почв была основана в 1926 году в Ленинградском государственном университете С.С.Неуструевым.

Впервые учебник по почвоведению и географии почв для географических факультетов университетов (И. П. Герасимов, М. А. Глазовская. Основы почвоведения и география почв) вышел в 1960 году.

Почвенно-биоклиматические пояса, области, зоны, подзоны, фации

Фация (геология)

[править]

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Фация.

Фа́ция (лат. facies — лицо, облик) в геологии[1]:

  1. Физико-географические условия отложения осадочной породы (озёрные, лагунные, морские)

  2. Пласт или свита пластов, отличающиеся на всём протяжении одинаковыми литологическими свойствами и включающие одинаковые органические ископаемые осадки

  3. Фация метаморфизма — совокупность метаморфических горных пород различного состава, но с одинаковыми условиями образования.

  4. Комплекс горных пород, образующихся в строго определённых физико-географических условиях и характеризирующихся специфическими литологическими, палеонтологическими и другими особенностями.

Содержание

 [убрать

  • 1 Описание

  • 2 Область сноса

  • 3 Климатические условия образования

  • 4 Виды геологических фаций

    • 4.1 Морские фации

    • 4.2 Переходные фации

      • 4.2.1 Лагунные фации

      • 4.2.2 Дельтовые фации

    • 4.3 Континентальные фации

  • 5 Примечания

  • 6 Литература

[Править] Описание

Фации, составляющие толщу одновозрастных пород в пределах площади распространения, могут быть различными. Восстановление условий образования древних осадков во всей совокупности характерны для признаков получило название фациального анализа. Термин «фация» был предложен швейцарским учёным А. Грессли (en:Amanz Gressly) в 1838 г. Он писал, что фация — слой или группа слоёв, отражающих среду осадконакопления. Изучение фаций позволяет оконтурить области сноса (питающие провинции) и области седиментации (водная и воздушная), климат, рельеф дна и глубину морского бассейна, солевой и газовый состав, температуру воды, характер движения среды осадконакопления, старость и др.

[Править] Область сноса

В настоящее время геологи располагают бо´льшими данными о физико-географических условиях древних морских бассейнов, чем об обстановке древних участков суши. Суша — область сноса. Разрушаясь, она зачастую не оставляла после себя никаких следов. Моря — области накопления осадков. По областям накопления геологи, спустя многие миллионы лет выявляют источники сноса обломочного материала. Критерием для определения области сноса является гранулометрический состав осадков и ряд других признаков. Так, галька при движении в водной среде стремится сохранить склон максимальной плоскости сечения против течения потока.

Галька, расположенная непосредственно вблизи области разрушения, самая крупная и слабоокатанная. По мере удаления от области сноса окатанность повышается, а размер гальки уменьшается. Руководствуясь формой, размером и ориентировкой гальки, описанным признакам было установлено, что реки до образования Байкальского грабена текли с возвышенности, которая была на месте оз. Байкал. Для выявления местоположения областей сноса обломочного материала исследователи используют и такой факт, как ориентировка песчинок в песчаниках.

Большую роль в выявлении области сноса могут сыграть минералы, присутствующие в породах области аккумуляции. Минералы эти геологи называют аллотигенными (принесёнными извне).