
- •5.Общая схема организации растительной клетки.
- •6.Методы исследования.
- •7.Основные закономерности поглощения воды клеткой.(Ксения Копылова)
- •8.Осмос и его законы.
- •9.Растительная клетка - осмотическая система.
- •10.Водный режим растений.(Дарья Тимофеева)
- •12.Поглощение воды растением
- •13.Транспорт воды по растению.
- •14.Механизмы передвижения воды по растению
- •12. Валовой химический состав пахотных горизонтов почв (% на прокаленную навеску) в сравнении с зольным составом растений (% на золу)
- •18.Классификации элементов, необходимых для растений.
- •19.Механизмы поглощения и транспорта минеральных элементов
- •25.Фосфорилирование на уровне субстрата и фосфорилирование в дыхательной цепи.
- •26.Мембраны как структурная основа биоэнергетических процессов.
- •27.Электро-химический потенциал – движущая сила фосфорилирования.
- •28.Регуляция электронного транспорта и фосфорилирования
- •29.Роль дыхания в продукционном процессе.
- •30.Составляющие дыхания.
- •32.Структурная организация фотосинтетического аппарата. (Быкова Татьяна)
- •33.Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма.
- •34.Фотосинтетические пигменты
- •35.Хлорофилл-белковые комплексы. (Климова к)
- •36.Первичные процессы фотосинтеза. Поглощение света и передача энергии возбуждения
- •37.Регуляция электрон-транспортной цепи фотосинтеза.Основные функциональные комплексы этц
- •38.Темновая стадия фотосинтеза. (Татьяна Евсеева)
- •39.Экология фотосинтез
- •41. Активный транспорт ионов. Механизм поглощения ионов растениями
- •45. Каротиноиды. Химическое строение и функции.
- •46. Кинетика процессов поглощения ионов. Участие мембранных структур клетки в поглощении и компартментации ионов.
- •47. Корень как орган поглощения минеральных элементов и воды.(Дарья Тимофеева)
- •48. Корневая система как орган потребления воды. Корневое давление: значение, механизм и методы определения.
- •52. Основные соединения серы в растении, их метаболизм и функции.
- •53. Основные соединения фосфора в растении, их метаболизм и функции.
- •54. Особенности водного обмена различных групп растений (ксерофиты, мезофиты, гидрофиты). Механизмы адаптации растений к дефициту влаги.
- •55. Поступление, метаболизм и функции калия в растениях.
- •56. Поступление, метаболизм и функции кальция в растениях. (Тимофеева Даша)
- •57. Почва как источник минеральных элементов для растений.
- •59. Реакция растений на высокое содержание солей в почве.
- •60. Ростовые и тургорные движения растений .
- •61. Транспирация, ее формы и физиологическое значение. Количественные показатели
- •62. Цикл Кребса. Механизмы регуляции цикла.
- •63. Цикл Хэтча-Слэка-Карпилова
- •64. Электрон-транспортная цепь митохондрий
- •65. Кислотный метаболизм Толстянковых (сам-фотосинтез)
- •66. Гликолатный цикл
- •67.Фоторазложение воды.
26.Мембраны как структурная основа биоэнергетических процессов.
Элементарные акты трансформации энергии, совершающиеся на молекулярном уровне, осуществляются набором ферментов, локализованных в специализированных структурах, и прежде всего в биологических мембранах. Все биоэнергетические процессы тонко регулируются намолекулярном, мембранном, клеточном и организменном уровнях.
Два основных процесса энергообразования — фотосинтез и тканевое дыхание — локализованы в мембранах внутриклеточных органелл высших организмов, а у бактерий — в клеточной (плазматической) мембране. Фотосинтезирующие мембраны преобразуют энергию света в энергию химических соединений, запасая ее в форме сахаров — основного химического источника энергии для гетеротрофных организмов. При дыхании энергия органических субстратов освобождается в процессе переноса электронов по цепи окислительно-восстановительных переносчиков и утилизируется в процессе фосфорилирования АДФ неорганическим фосфатом с образованием АТФ. Мембраны, осуществляющие фосфорилирование, сопряженное с дыханием, называют сопрягающими (внутренние мембраны митохондрий, клеточные мембраны некоторых аэробных бактерий, мембраны хроматофоров фотосинтезирующих бактерий).
Митохондрия имеет две мембраны: внутреннюю и наружную, и, соответственно, две камеры (внутреннюю и наружную), отделенные друг от друга внутренней мембраной. Инвагинации внутренней мембраны в полость внутренней камеры образуют кристы. Пространство между кристами и наружной мембраной непрерывно и формирует единственную камеру межмембранного пространства. Соответственно, матрикс, окруженный складками внутренней мембраны, образует внутреннюю камеру (Рис. 2). Внешняя митохондриальная мембрана проницаема для малых молекул и ионов, которые перемещаются через трансмембранные каналы, сформированные семейством интегральных мембранных белков, названных поринами. Имеются также потенциал-зависимые анионные каналы, образованные чувствительными к мембранному потенциалу наружной мембраны поринами, которые позволяют обмениваться метаболитами между митохондрией и цитоплазмой.
Внутренняя мембрана непроницаема для Н+, и это чрезвычайно важное свойство мембраны является ключевым для митохондриальной трансдукции энергии. У химических веществ, таких как ионы и малые молекулы, которые пересекают внутреннюю мембрану, есть специфические транспортеры. Внутренняя мембрана содержит как интегральные белки - ключевые катализаторы окислительнго фосфорилирования - дыхательные комплексы электронтранспортной цепи переноса электронов, так и АТФ - синтазный комплекс.Элементарные акты трансформации энергии, совершающиеся на молекулярном уровне, осуществляются набором ферментов, локализованных в специализированных структурах, и прежде всего в биологических мембранах. Все биоэнергетические процессы тонко регулируются на
27.Электро-химический потенциал – движущая сила фосфорилирования.
Движущая сила окислительного фосфорилирования — это потенциал переноса электронов, присущий NADH или FADH2. Рассчеты ΔE'о и ΔG0 связанные с окислением NADH под действием О2. Промежуточные частичные реакции следующие:
а) 1/2О2 +2Н+ +2 ē→ Н2О
E«о = +0,82 В,
б) NAD+ + Н+ +2 ē→ NADH
E«о = — 0,32 В.
Вычитая реакцию б) из реакции а), получаем
в) 1/2 О2 + NADH + Н+ → Н2О + NAD +
ΔE'о = +1,14 В.
Свободная энергия окисления для этой реакции составляет
ΔG0 = -2—23,062.1,14 = — 52,6 ккал/моль.
Таким образом доказано, что молекула NADH является источником энергии, и, как показывают расчеты, при окислении этой молекулы с участием кислорода выделяется такое количество энергии, которое достаточно для синтеза 7 молекул АТФ. Но реакция происходит взрывообразно, и это не позволяет перевести энергию в более адекватную форму.
Чтобы обеспечить перевод энергии окисления в энергию АТФ необходима система окисления, это обеспечивает дыхательная цепь, состоящая из 4-х белковых комплексов, содержащих коферменты, участвующие в окислительно-восстановительных реакциях. В результате мы имеем с одной стороны материальную группу молекул, передающих электроны друг от друга, то есть образуется система передачи электронов от NADH к О2 по которому идут электроны, как электрическая цепь в сети, с другой стороны это последовательность окислительно-восстановительных реакций, которые происходят в составе электронтранспортной цепи, молекулы коферментов являются окислителями (акцепторами электронов) при взаимодействии с предшествующими молекулами, и являются восстановителями (донорами электронов) при взаимодействии со следующей молекулой цепи.